بررسی کیفیت تخم مرغ محلی از نظر نطفه داری در دوره انبار مانی به کمک طیف سنجی مرئی-فروسرخ نزدیک

نویسندگان
1 دانشجوی دکتری مهندسی مکانیک بیوسیستم، دانشگاه تربیت مدرس.
2 دانشیار، گروه مهندسی مکانیک بیوسیستم، دانشگاه تربیت مدرس.
3 استاد، گروه مهندسی مکانیک بیوسیستم، دانشگاه تربیت مدرس.
4 استادیار، گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان.
چکیده
تعیین وضعیت نطفه‌داری تخم مرغ سهم عمده‌ای در تعیین کیفیت تخم مرغ و محصولات آن دارد، در همین راستا به منظور دستیابی به بهره‌وری و تولید بیشتر ارزیابی تخم مرغ از لحاظ نطفه‌دار بودن ضروری و مهم تلقی می‌گردد. در این راستا، طیف‌گیری در محدوده‌ی طیفی nm1100-190 از 130 نمونه تخم مرغ محلی در راستای قطر اصلی به مدت 3 روز در دوره انبار‌مانی انجام پذیرفت. داده‌های طیفی حاصل از اسپکترومتر، افزون بر اطلاعات نمونه، شامل اطلاعات ناخواسته و نویز هستند. به همین دلیل، برای دستیابی به مدل‌های طبقه‌بندی دقیق، نیاز به پیش‌پردازش داده‌های طیفی پیش از تدوین مدل مناسب است. در این راستا، طبقه‌بند هوشمند شبکه عصبی بر پایه‌ی اندازه‌گیری‌های مرجع و اطلاعات طیف‌های پیش‌پردازش شده با ترکیب روش‌های مختلف هموارسازی، نرمالسازی و افزایش قدرت تفکیک طیفی برای تعیین وجود نطفه‌ در تخم مرغ تدوین شدند. نتایج طبقه‌بندی در روز صفرم، اول، دوم، انبارمانی با دقت 3/72%،1/73%، 5/75%، و تشخیص به ترتیب ، 31/86، 1/87%، 76 % و حساسیت به ترتیب: 83/61%، 63/79% و 3/73 % بدست آمد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of domestic hen Egg quality in terms of Fertilization during storage using Near Infrared Spectroscopy

نویسندگان English

Seyedeh Arefeh Hosseini 1
ahmad banakar 2
Saeid Minaei 3
Saman Abdanan Mehdizadeh 4
1 Department of Biosystems Engineering, Tarbiat Modares University of Tehran.
2 Department of Biosystems Engineering, Tarbiat Modares University of Tehran.
3 Department of Biosystems Engineering, Tarbiat Modares University of Tehran.
4 Department of Biosystems Engineering, Ramin University of Khuzestan.
چکیده English

Determining the status of egg fertilization plays a major role in determining the quality of eggs and their products. In this regard, in order to achieve greater productivity and production, egg evaluation is considered necessary and important in terms of spermatogenesis. In this regard, spectroscopy was performed in the range of 0.01900 nm from 130 local egg samples in the direction of the main diameter for 3 days during the storage period. Spectrum data from spectrometers, in addition to sample information, include unwanted information and noise. For this reason, in order to achieve accurate classification models, it is necessary to process spectral data before developing the appropriate model. In this regard, intelligent neural network classification was developed based on reference measurements and information of pre-processed spectra by combining different methods of smoothing, normalizing and increasing spectral separation power to determine the presence of sperm in the egg. Classification results on day zero, first, second, warehousing with 72.3% accuracy, 73.1%, 75.5%, and detection, 86.31, 87.1%, 76% and sensitivity, respectively: 83 61%, 79.63% and 73.3% were obtained.

کلیدواژه‌ها English

Sperm
Egg quality assessment
Candling
Spectrometer
Visual and NIR Spectroscopy
Neural Network
[1]. Anonymous, Yearbook of Ministry of Agriculturre Jihad. 2019
[2]. Coucke, P. M., Room, G. M., Decuypere, E. M. and De Baerdemaeker, J. G. 1997. Monitoring embryo development in chicken eggs using acoustic resonance analysis. Biotechnology progress. 13(4): 474-478
[3]. Klein, S., D. Flock, and F. Ellendorff. 2003. Management of newly hatched male layer chicksdcurrent knowledge on sex determination and sex diagnosis in chicken: potential solutions. Worlds Poult Sci J 59:62–64
[4]. Schellpfeffer, M. A., Kuhlmann, R. S., Bolender, D. L., Ruffolo, C. G. and Kolesari, G. L. 2005. Preliminary investigation of the use of high frequency ultrasound imaging in the chick embryo. Birth Defects Research Part A: Clinical and Molecular Teratology. 73(1): 39-49
[5]. Ghaderi, M., Banakar, A., Masoudi, A. 2018. Using dielectric properties and intelligent methods in Separating of hatching eggs during incubation. Measurement – Elsevier. 118: 191-194
[6]. Smith, D. P., K. C. Lawrence, and G. W. Heitschmidt. 2008. Fertility and Embryo Development of Broiler Hatching Eggs Evaluated with a Hyperspectral Imaging and Predictive Modeling System. Int. J. Poult. Sci. 7:1001–1004
[7]. Kemps, B. J., F. R. Bamelis, K. Mertens, E. M. Decuypere, J. G. de Baerdemaeker, and B. de Ketelaere. 2010. Assessment of embryonic growth in chicken eggs by means of visible transmission spectroscopy. Biotechnol. Prog. 26:512–516
[8]. Liu, L., and Ngadi, M. O. 2013. Detecting fertility and early embryo development of chicken eggs using near-infrared hyperspectral imaging. Food and Bioprocess Technology. 6(9): 2503-2513
[9]. Ma, X. L. and Yi, S. J. 2011. Unfertilized eggs verification system before hatching based on embedded system and machine vision. Transactions of the Communications for Statistical Applications and Methods. 42(5): 187–192. (In Chinese with English abstract)
[10]. Zhihui, Z., Ting, L., Dejun, X., Qiaohua, W. and Meihu, M. 2015. Nondestructive detection of infertile hatching eggs based on spectral and imaging information. International Journal of Agricultural and Biological Engineering. 8(4): 69
[11]. Dong, J., Dong, X., Lia, Y., Penga, Y., Chaob, K., Gaoc,C. and Tang, X. 2019. Identification of unfertilized duck eggs before hatching using visible/near infrared transmittance spectroscopy. Computers and Electronics in Agriculture 157. 471-478
[12]. Jamshidi, B., Minaei, S., Mohajerani, E. and Ghassemian, H. 2014. Effect of Spectral PreProcessing Methods on Non-Destructive Quality Assessment of Oranges Using NIRS. Journal of Agricultural Engineering Research. 15(2), 27- 44. (in Farsi)
[13]. Giunchi, A., Berardinelli, A., Ragni, L., Fabbri, A and Silaghi, F.A. 2008. Non-destructiv freshness assessment of shell eggs using FT-NIR spectroscopy. Journal of Food Engineering, (89) 142-148.
[14]. Heise, H. M. and Winzen, R. 2006. Chemometrics in Near-Infrared Spectroscopy. In: Siesler, H. W., Ozaki, Y., Kawata, S. and Heise, H. M. (Eds.) Near-Infrared Spectroscopy: Principles, Instruments, Applications. 3rd Reprint. WileyVCH. Germany
[15]. Fu, X., Ying, Y., Lu, H., Xu, H. and Yu, H. 2007. FT-NIR diffuse reflectance spectroscopy for kiwifruit firmness detection. Sensing and Instrumentation for Food Quality and Safety, 1(1), 29-35
[16]. Mat Nawi, N., Chen, G., Jensen, T., and Abdanan Mehdizadeh S. 2013. Prediction and classification of sugarcane Brix based on skin scanning using visible and shortwave near infrared, Biosystems Engineering, 115 (2), 154– 161
[17]. Abdanan Mehdizadeh, S. 2015. Egghell crack detection using PCA and SVM. Journal of food science and technology, 13(56), 143-153. (In Farsi)
[18]. Banakar A., Sadeghi, M., and Shoushtari, A. 2016. An intelligent device for diagnosing avian diseases: Newcastle, infectious bronchitis, avian influenza. Computers and Electronics in Agriculture - Elsevier, 127: 744–753
[19]. Das, K., and M. D. Evans. 1992. Detecting fertility of hatching eggs using machine vision. II. Neural network classifiers. Trans. ASAE
[20]. Zhi-hong, Y., W. Chun-guang, and F. Jun-qing. 2006. SAPSO neural network for inspection of non-development hatching eggs.Pages 85–88 in Advances in Natural Computation. Springer
[21]. Ghaderi, M., Banakar, A., Masoudi, A. 2017. Detecting fertile eggs during incubation using dielectric properties. Journal of Researches in Mechanics of Agricultural Machinery. 6(1): 23-29. (In Farsi)