مطالعه تأثیر کود نیتروژن و فرایند نیم جوش کردن بر محتوای فلزات سنگین دانه برنج

نویسندگان
1 گروه علوم و صنایع غذایی، واحد آیت‌الله آملی، دانشگاه آزاد اسلامی، آمل، ایران.
2 گروه علوم و صنایع غذایی واحد آیت‌الله آملی، دانشگاه آزاد اسلامی،آمل، ایران.
3 استاد گروه مهندسی کشاورزی-زراعت، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران.
4 استادیار پژوهش، مؤسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران.
چکیده
برنج قوت غالب مردم ایران است و آلودگی آن با فلزات سنگین خطرات جبران‌ناپذیری برای مصرف‌کنندگان دارد. هدف از این مطالعه یافتن راهی برای کاهش جذب فلزات سنگین از برنج است. برای مطالعه تأثیر کود نیتروژن و نیم جوش کردن بر فلزات سنگین، آزمایشی به‌صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی در سه تکرار اجرا شد. در این پژوهش، کود نیتروژن در سه سطح (N1:60، N2:80 و KgN/Ha N3:100) و نیم جوش کردن در دو سطح دمای خیساندن (50 C1: و 80 C2: درجه سانتی‌گراد) و دو سطح زمان بخاردهی (10 T1: و 15: T2 دقیقه) اعمال گردید. جهت تعیین فلزات سنگین از طیف‌سنج جرمی پلاسمای القایی (ICP-MS) استفاده شد. افزایش دمای خیساندن و زمان بخاردهی منجر به کاهش کلیه فلزات سنگین می‌شود اما تغییرات سطوح کود بر فلزات سنگین تأثیر معناداری نداشت. بررسی اثرات متقابل تیمارها نشان داد تیمار N3C1T1 بالاترین درصد از حد مجاز دریافت هفتگی کروم و نیکل (به ترتیب 99% و 58%) و همچنین تیمار N2C1T1 بالاترین درصد از حد مجاز دریافت هفتگی جیوه و کادمیوم (به ترتیب 11% و 5/9%) را دارند. افزایش دمای خیساندن و زمان بخاردهی، دریافت هفتگی تمامی فلزات سنگین را به حداقل می‌رساند بطوریکه تیمار N2C2T2 کمترین دریافت هفتگی از تمامی فلزات سنگین را نشان می‌دهد. در دما و زمان کمتر، فلزات سنگین باقیمانده قابل چشم‌پوشی نیستند، بنابراین نیم جوش کردن در دما و زمان بالاتر برای حفظ امنیت و سلامت مصرف‌کننده توصیه می‌شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comparison the effect of nitrogen fertilizer and parboiling process on heavy metals of rice grain

نویسندگان English

Azin Nasrollah Zadeh Masouleh 1
Azade Ghorbani-HasanSaraei 2
Ebrahim Amiri 3
Fatemeh Habibi 4
1 Department of Food Science and Technology, Islamic Azad University, Ayatollah Amoli Branch
2 Department of Food Science and Technology, Islamic Azad University, Ayatollah Amoli Branch
3 Department of Water Engineering, Faculty of Agriculture, Islamic Azad University, Lahijan Branch
4 Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREO)
چکیده English

Rice is the staple food of the Iranian people and its pollution with heavy metals has irreparable dangers for consumers. The aim of this study is to find a way to reduce the absorption of heavy metals from rice. To study the effect of nitrogen fertilizer and parboiling process on heavy metals, a factorial experiment was conducted in a randomized complete block design with three replications. In this study, nitrogen fertilizer at three levels (N1: 60, N2: 80 and N3:100 KgN /Ha) and parboiling at two levels of soaking temperature (C1:50 and C2:80 °C) and two levels of steaming time (T1:10 And T2:15 min) were applied. Induced plasma mass spectrometry (ICP-MS) was used to determine heavy metals. Increasing the soaking temperature and steaming time reduced all heavy metals, but changes in fertilizer levels had no significant effect on heavy metals. The interaction effects of the treatments showed that N3C1T1 treatment had the highest percentage of weekly allowance for Cr and Ni (99% and 58%, respectively) and N2C1T1 treatment had the highest percentage of weekly allowance for Mg and Cd (11% and 9.5%, respectively). Increasing the soaking temperature and steaming time minimizes the weekly intake of all heavy metals so that the N2C2T2 treatment shows the lowest weekly intake of all heavy metals. In less heat and time, the remaining heavy metals cannot be ignored, so parboiling at higher temperatures and times is recommended to maintain consumer safety and health.

کلیدواژه‌ها English

Rice
Nitrogen
parboiling
Heavy metals
soaking
Steaming
[1] Tayefe, M., Shahidi, S. A., Milani, J. M., & Sadeghi, S. M. (2020). Development, optimization, and critical quality characteristics of new wheat-flour dough formulations fortified with hydrothermally-treated rice bran. Journal of Food Measurement and Characterization, 14(5), 2878-2888.
[2] Sangeetha, S., A. Balakrishnan, and P. Devasenapathy, (2013). Influence of organic manures on yield and quality of rice (Oryza sativa L.) and blackgram (Vigna mungo L.) in rice-blackgram cropping sequence. 4(5): p. 7.
[3] Ziarati, P. and M. Moslehisahd, (2017). Determination of heavy metals (Cd, Pb, Ni) in Iranian and imported rice consumed in Tehran. Iranian Journal of Nutrition Sciences & Food Technology,. 12(2): p. 97-104.
[4] Rafe, A., Mousavi, S. S., & Shahidi, S. A. (2014). Dynamic rheological behavior of rice bran protein (RBP): Effects of concentration and temperature. Journal of Cereal Science, 60(3), 514-519.
[5] Vahaji, N., M. Tayefe, and M. Sadeghi, (2019). Comparison of the concentration of heavy elements and their weekly absorption in consumed rice planted in different regions of Guilan province. EBNESINA,. 21(4): p. 51-58.
[6] Thielecke, F. and A.P. Nugent, (2018). Contaminants in grain—a major risk for whole grain safety? Nutrients, 10(9): p. 1213.
[7] Jianjie, F., Qunfang, Z., Jiemin, L., Wei, L., Thanh, W., Qinghua, Z., & Guibin, J. (2008). High levels of heavy metals in rice from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere, 71, 1269-1275.
[8] Dehghani, M., Mosaferi, F., & Alipour, V. (2016). Heavy Metals in the Imported and Iranian Rice Consumed in Hormozgan Province. Journal of health sciences and surveillance system, 4(3), 106-110.
[9] Sadeghi, M., Hamidizad, H., & Habibi, F. (2021). Effects of irrigation interval and nitrogen fertilizer on quality characteristics related to viscosity in Gilaneh rice cultivar. Food Science and Technology, 17(109), 21-32.
[10] Liu, K., Zheng, J., & Chen, F. (2018). Effects of washing, soaking and domestic cooking on cadmium, arsenic and lead bioaccessibilities in rice. Journal of the Science of Food and Agriculture, 98(10), 3829-3835.
[11] Argos, M., Kalra, T., Pierce, B.L., Chen, Y., Parvez, F., Islam, T., Ahmed, A., Hasan, R., Hasan, K., Sarwar, G. and Levy, D., (2011). A prospective study of arsenic exposure from drinking water and incidence of skin lesions in Bangladesh. American journal of epidemiology, 174(2), 185-194.
[12] Mansouri, B., azadi, N., & Rezaei, Z. (2015). Survey of Pb, Cd, and Cr concentrations in imported Indian and Pakistan rice distributed in Sanandaj city. 16(49), 44-49.
[13] David, E.E., Nwobodo, V., Famurewa, A.C., Igwenyi, I.O., Egedeigwe-Ekeleme, C.A., Obeten, U.N., Obasi, D.O., Ezeilo, U.R. and Emeribole, M.N. (2020). Effect of parboiling on toxic metal content and nutritional composition of three rice varieties locally produced in Nigeria. Scientific African, 10, e00580.
[14] Ziarati, P., & Azizi, N. (2014). Consequences of cooking method in essential and heavy metal contents in brown and polished alikazemi rice. International Journal of Plant, Animal and Environmental Sciences, 4(2), 280-287.
[15] Hedayatsafa, M., & Mohammadian Roshan, N. (2019). Investigating the Amount of Rice Contamination in the Main Samples and Ratoon. Paramedical Sciences and Military Health, 14(2), 1-7.
[16] Shahid, M., Khalid, S., Abbas, G., Shahid, N., Nadeem, M., Sabir, M., Aslam, M. and Dumat, C. (2015). Heavy metal stress and crop productivity. In Crop production and global environmental issues (pp. 1-25). Springer, Cham.
[17] Zhao, K., Liu, X., Xu, J., & Selim, H. M. (2010). Heavy metal contaminations in a soil–rice system: identification of spatial dependence in relation to soil properties of paddy fields. Journal of Hazardous Materials, 181(1-3), 778-787.
[18] Hajeb, P., Sloth, J. J., Shakibazadeh, S., Mahyudin, N. A., & Afsah‐Hejri, L. (2014). Toxic elements in food: Occurrence, binding, and reduction approaches. Comprehensive Reviews in Food Science and Food Safety, 13(4), 457-472.
[19] Mataveli, L. R. V., Buzzo, M. L., Arauz, L. J. D., Carvalho, M. D. F. H., Arakaki, E. E. K., Matsuzaki, R., & Tiglea, P. (2016). Total arsenic, cadmium, and lead determination in Brazilian rice samples using ICP-MS. Journal of analytical methods in chemistry, 2016. ID 3968786.
[20] Naseri, M., Vazirzadeh, A., Kazemi, R., & Zaheri, F. (2015). Concentration of some heavy metals in rice types available in Shiraz market and human health risk assessment. Food chemistry, 175, 243-248.
[21] Naseri, M., Rahmanikhah, Z., Beiygloo, V., & Ranjbar, S. (2018). Effects of two cooking methods on the concentrations of some heavy metals (cadmium, lead, chromium, nickel and cobalt) in some rice brands available in Iranian Market. Journal of chemical health risks, 4(2).
[22] Fan, Y., Zhu, T., Li, M., He, J., & Huang, R. (2017). Heavy metal contamination in soil and brown rice and human health risk assessment near three mining areas in central China. Journal of Healthcare Engineering, 2017. ID 4124302.
[23] ISIRI, (2000). Food & Feed-Maximum limit of heavy metals ISIRI. 1st. Edition, Karaj: ISIRI, no12968.
[24] Rezaiyan, A. F., & Hesari, J. (2014). A study on contamination of white rice by cadmium, lead and arsenic in Tabriz. 23(4), 581-594.
[25] Morekian, R., et al., (2013). Cooking elements affecting on heavy metal concentration in rice. Journal of Health System Research, 9 (13) :1394-1405
[26] Shindoh, K., & Yasui, A. (2003). Changes in cadmium concentration in rice during cooking. Food science and technology research, 9(2), 193-196.
[27] Sharafi, K., Yunesian, M., Nodehi, R. N., Mahvi, A. H., Pirsaheb, M., & Nazmara, S. (2019). The reduction of toxic metals of various rice types by different preparation and cooking processes–Human health risk assessment in Tehran households, Iran. Food chemistry, 280, 294-302.
[28] Safarzadeh Shirazi, S., Ronaghi, A. M., Karimian, N., Yasrebi, J., & Emam, Y. (2012). Influence of cadmium toxicity on nitrogen and phosphorus uptake and some vegetative growth parameters in shoot of seven rice cultivars. Journal of Science and Technology of Greenhouse Culture-Isfahan University of Technology, 3(1), 107-118.
[29] Malakouti, M. J. (2011). Relationship between balanced fertilization and healthy agricultural products (a review). 4(16), 133-150.
[30] Li, H., Luo, N., Li, Y. W., Cai, Q. Y., Li, H. Y., Mo, C. H., & Wong, M. H. (2017). Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures. Environmental Pollution, 224, 622-630.
[31] Rezaitabar, S., Esmailisari, A., & Bahramifar, N. (2015). Investigation of mercury concentration in soil and most cultured rice of Mazandaran province and most consumed imported rice and assess potential health risk. Journal of Food Science & Technology (2008-8787), 13(53).
[32] Bhattacharya, P., Samal, A. C., Majumdar, J., & Santra, S. C. (2010). Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy and Water Environment, 8(1), 63-70.
[33] Ayamdoo, A. J., Demuyakor, B., Dogbe, W., Owusu, R., & Ofosu, M. A. (2013). Effect of varying parboiling conditions on physical qualities of Jasmine 85 and Nerica 14 rice varieties. American Journal of Food Technology, 8(1), 31-42.
[34] Kumar, V., Sinha, A. K., Makkar, H. P., & Becker, K. (2010). Dietary roles of phytate and phytase in human nutrition: A review. Food chemistry, 120(4), 945-959.