[1] Sherlock, O., Dolan, A., Athman, R., Power, A., Gethin, G., Cowman, S., & Humphreys, H. (2010). Comparison of the antimicrobial activity of Ulmo honey from Chile and Manuka honey against methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. BMC complementary and alternative medicine,10(1), 1-5.
[2] Bogdanov, S., Jurendic, T., Sieber, R., & Gallmann, P. (2008). Honey for nutrition and health: a review. Journal of the American College of Nutrition, 27(6), 677-89.
[3] Adams, C. J., Boult, C. H., Deadman, B. J., Farr, J. M., Grainger, M. N., Manley-Harris, M., & Snow, M. J. (2008). Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey. Carbohydrate Research, 343(4), 651-9.
[4] Cantarelli, M. A., Pellerano, R. G., Marchevsky, E.J., & Camiña, J.M. (2008). Quality of honey from Argentina: study of chemical composition and trace elements. Journal of the Argentine Chemical Society, 96(1-2), 33-41.
[5] Sahin, H., Kolayli, S., & Beykaya, M. (2020). Investigation of Variations of Invertase and Glucose Oxidase Degrees against Heating and Timing Options in Raw Honeys. Journal of Chemistry, 2020, 1-7.
[6] Leyva-Jimenez, F. J., Lozano-Sanchez, J., Borras-Linares, I., de la Luz Cadiz-Gurrea, M., & Mahmoodi-Khaledi, E. (2019). Potential antimicrobial activity of honey phenolic compounds against Gram positive and Gram negative bacteria. LWT, 101, 236-45.
[7] Huidobro, J. F., Sánchez, M. P., Muniategui, S., & Sancho, M.T. (2005). Precise method for the measurement of catalase activity in honey. Journal of AOAC International, 88(3), 800-4.
[8] Ohashi, K., Natori, S., & Kubo, T. (1999). Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age‐dependent role change of the worker honeybee (Apis mellifera L.). European Journal of Biochemistry, 265(1), 127-33.
[9] Mahmoodi-Khaledi, E., Kashef, N., Habibi-Rezaei, M., & Moosavi-Movahedi, A.A. (2015). In vitro characterization of antibacterial potential of Iranian honey samples against wound bacteria. European Food Research and Technology, 241(3), 329-39.
[10] Levy, S.B., & Marshall, B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nature medicine,10(12), S122-S9.
[11] Wasihun, A.G., & Kasa, B. G. (2016). Evaluation of antibacterial activity of honey against multidrug resistant bacteria in Ayder Referral and Teaching Hospital, Northern Ethiopia. SpringerPlus, 5(1), 842.
[12] Zwayen, G. F., & Mahmoodi-Khaledi, E. (2020). Antimicrobial effect of different types of honey derived from Iraqi flora on clinical strains of Proteus mirabilis, Proteus vulgaris and Klebsiella pneumonia. Annals of Tropical Medicine and Public Health, 23, 23-1122.
[13] Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-54.
[14] Won, S-R., Lee, D-C., Ko, S. H., Kim, J-W., & Rhee, H-I. (2008). Honey major protein characterization and its application to adulteration detection. Food Research International, 41(10), 952-6.
[15] Ahmed, H. (2004). Principles and reactions of protein extraction, purification, and characterization, CRC press.
[16] Hou, X., Liu, B., Deng, X., Zhang, B., Chen, H., & Luo, R. (2007). Covalent immobilization of glucose oxidase onto poly (styrene-co-glycidyl methacrylate) monodisperse fluorescent microspheres synthesized by dispersion polymerization. Analytical biochemistry, 368(1), 100-10.
[17] Ghosh, S., Ahire, M., Patil, S., Jabgunde, A., Bhat Dusane, M., Joshi, B. N., Pardesi, K., Jachak, S., Dhavale, D. D., Chopade, B. A. (2012). Antidiabetic activity of Gnidia glauca and Dioscorea bulbifera: potent amylase and glucosidase inhibitors. Evidence-Based Complementary and Alternative Medicine, 2012, 1-10.
[18] Hong, J-M., Lee, K-A., Kim, J., & Park, I. (1990). Production and properties of invertase from Aspergillus niger. Journal of the Korean Society of Food Science and Nutrition, 19, 577-87.
[19] Aebi, H. (1974). Catalase, Methods of enzymatic analysis, Elsevier, 673-84.
[20] Basualdo, C., Sgroy, V., Finola, M. S., & Marioli, J. M. (2007). Comparison of the antibacterial activity of honey from different provenance against bacteria usually isolated from skin wounds. Veterinary microbiology, 124(3-4), 375-81.
[21] French, V. M., Cooper, R. A., & Molan, P. C. (2005). The antibacterial activity of honey against coagulase-negative staphylococci. Journal of Antimicrobial Chemotherapy, 56(1), 228-31.
[22] Bocian, A., Buczkowicz, J., Jaromin, M., Hus, K. K., & Legáth, J. (2019). An Effective Method of Isolating Honey Proteins. Molecules, 24(13), 2399.
[23] da C Azeredo, L., Azeredo, M., De Souza, S., & Dutra, V. (2003). Protein contents and physicochemical properties in honey samples of Apis mellifera of different floral origins. Food chemistry, 80(2), 249-54.
[24] Belay, A., Haki, G. D., Birringer, M., Borck, H., Lee, Y-C., Kim, K-T., Baye, K., Melaku, S. (2017). Enzyme activity, amino acid profiles and hydroxymethylfurfural content in Ethiopian monofloral honey. Journal of food science and technology, 54(9), 2769-78.
[25] Bucekova, M., Buriova, M., Pekarik, L., Majtan, V., & Majtan, J. (2018). Phytochemicals-mediated production of hydrogen peroxide is crucial for high antibacterial activity of honeydew honey. Scientific reports, 8(1), 1-9.
[26] Serrano, S., Espejo, R., Villarejo, M., & Jodral, M. L. (2007). Diastase and invertase activities in Andalusian honeys. International journal of food science & technology, 42(1), 76-9.
[27] Brudzynski, K. (2020). A current perspective on hydrogen peroxide production in honey. A review. Food Chemistry, 127229.
[28] Dastouri, M. R., Fakhimzadeh, K., Shayeg, J., Dolgari-Sharaf, J., Valilou, M. R., & Maheri-Sis, N. (2008). Evaluating antibacterial activity of the Iranian honey through MIC method on some dermal and intestinal pathogenic bacteria. Journal of animal and veterinary advances, 7(4), 409-12.
[29] Taormina, P. J., Niemira, B. A., & Beuchat, L. R. (2001). Inhibitory activity of honey against foodborne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. International journal of food microbiology, 69(3), 217-25.
[30] Alonso-Torre, S. R., Cavia, M. M., Fernández-Muiño, M. A., Moreno, G., Huidobro, J. F., Sancho, M. T. (2006). Evolution of acid phosphatase activity of honeys from different climates. Food chemistry, 97(4), 750-5.
[31] Moniruzzaman, M., Khalil, M., Sulaiman, S., & Gan, S. (2012). Advances in the analytical methods for determining the antioxidant properties of honey: a review. African Journal of Traditional, Complementary and Alternative Medicines, 9(1), 36-42.
[32] Mahmoodi-Khaledi, E., Lozano-Sánchez, J., Bakhouche, A., Habibi-Rezaei, M., Sadeghian, I., Segura-Carretero, A. (2017). Physicochemical properties and biological activities of honeys from different geographical and botanical origins in Iran. European Food Research and Technology, 243(6), 1019-30.
[33] Shah, T., Ali, N., Shah, Z., Hayat, A. (2019). Antibacterial Activity of Pakistani Honey. Pakistan Journal of Scientific and Industrial Research Series B, 2019;62(2):97-100.
[34] White, J. r. J. W., Subers, M. H., & Schepartz, A. I. (1963). The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochimica et Biophysica Acta, 73(1), 57-70.