بهینه‌سازی استخراج ترکیبات زیست فعال از میوه زرشک بی‌دانه با پیش‌تیمار میدان الکتریکی پالسی

نویسندگان
گروه علوم و صنایع غذایی، دانشگاه غیرانتفاعی ساعی ، گرگان، ایران
چکیده
در این تحقیق به‌منظور بهینه‌سازی فرایند استخراج عصاره اتانولی میوه زرشک، افزایش و بهینه‌سازی شرایط استخراج آنتوسیانین ها و ترکیبات زیست فعال به کمک پیش تیمار میدان الکتریکی پالسی از 3 سطح شدت میدان الکتریکی (5/0، 75/1 و 3 کیلوولت بر سانتی‌متر) و 3 سطح تعداد پالس (15، 30 و 45) استفاده گردید و میزان فلاونوئیدها، آنتوسیانین کل، فعالیت رادیکال گیرندگی به روش DPPH، میزان ترکیبات فنولی کل، قدرت احیاکنندگی آهن، میزان ویتامین C و اسیدیته در مقایسه با کنترل (فاقد تیمار) موردبررسی قرار گرفت. نتایج نشان داد که محتوای فنول کل عصاره با افزایش تعداد پالس و کاهش شدت میدان الکتریکی پالسی اعمال‌شده به نمونه کاهش یافت. افزایش شدت میدان الکتریکی و تعداد پالس‌ها در ابتدا منجر به افزایش میزان فلاونوئید، DPPH و قدرت احیاکنندگی یون آهن گردید ولی با افزایش بیشتر این متغیرها، این سه پارامتر کاهش یافتند. همچنین با افزایش این پارامترها میزان آنتوسیانین و محتوای ویتامین C افزایش یافت. میزان اسیدیته نمونه با افزایش شدت میدان الکتریکی و تعداد پالس اعمال‌شده ابتدا کاهش و سپس افزایش یافت. با توجه به نتایج بهینه‌سازی فرایند می‌توان بیان نمود که شدت میدان الکتریکی 003/2 کیلوولت بر سانتی‌متر و اعمال 653/28 پالس، موجب افزایش خواص آنتی‌اکسیدانی در محصول فراوری‌شده نسبت به نمونه شاهد بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of anthocyanin's and bioactive compounds extraction from seedless barberry fruit with pulsed electric field

نویسندگان English

fatemeh Tayebi Rad
hamid bakhshabadi
shilan rashidzadeh
1- Master of Science in Food Technology Engineering Student.
چکیده English

Optimization of extraction of bioactive compounds from seedless barberry fruit using pulsed electric field pretreatment

Abstract



In this research, in order to optimize the extraction process of Ethanolic extract of barberry fruit, the increase and optimization of the conditions for the extraction of anthocyanin's and bioactive compounds by means of intermittent electric field pre-treatment from three levels of electric field intensity (0.5, 1.75 and 3 kV / cm) and 3 levels of number of pulses (15, 30 and 45); then with ethanol solvent was used to extract their extracts and the amount of flavonoids, total anthocyanin, DPPH, total phenolic compounds, iron regeneration capacity, vitamin C and acidity compared to control (no treatment) Was studied. The results showed that the total phenol content of the extract decreased by increasing the number of pulses and reducing the intensity of the pulsed electric field applied to the sample. The increase in the electric field strength and the number of pulses initially increased the flavonoid content, DPPH and iron ion recovery capacity, but with the increase of these variables, these three parameters decreased. Also, with increasing of these parameters, the anthocyanin level and vitamin C content increased. The acidity of the sample was reduced and then increased by increasing the electric field strength and applied pulse number. Regarding the results of the process optimization, it can be concluded that the electrical field intensity of 2.003 kV / cm and applying 29 pulses can increases the antioxidant properties of the produced product compared with the control sample.


کلیدواژه‌ها English

Anthocyanin
Extraction
Barberry
Pulse electric field
[1] Mortazavi, S. A.,Sharifi, A., Maskooki, A., Niakoosari, M., Elhamiraad, A, H. and Reigi, S. 2013. Optimization of the process of premature extraction of phenolic compounds, anthocyanins and vitamin C from micronutrient to the response surface methodology, Journal of Food Science and Technology. 3(1): 11-24. (In Persian).
[2] Herreroa, M. Mendiolaa, b. Jose, A. Cifuentesa, A. and neza E. I. 2010. Supercritical fluid extraction: Recent advances and applications, Journal of Chromatography. 16: 2495-511.
[3] Scalia, S. Giuffreda, L. and Pallado, P.1999. Analytical and Preparative Supercritical Fluid Extraction of Chamomile Flowers and its Comparison with Conventional Methods”, Journal of Pharmacy Biomedical Analysis. 21: 549-558.
[4] Wenqiang, G. Shufen, L. Ruixiang, Y. Shaokun, T. and Can, Q. 2007. Comparison of Essential Oils of Clove Buds Extracted with Supercritical Carbon Dioxide and other Three Traditional Extraction Methods”, Food Chemistry 101: 1558-1564.
[5] Luque de Castro, M. D. and Garcia-Ayuso, L. E. 1998. Soxhlet extraction of solid materials: An outdated technique with a promising innovative future. Analytica Chimica Acta. 369: 1–10.
[6] Guderjan, M., Topfl, S., Angersbach, A. and knorr, D. 2005. Impact of pulsed electric Fields treatment on the recovery and quality of plant oils. Journal of Food Engineering. 67 (3): 281-287.
[7] Toepfl, S., Heinz, V. and Knorr, D. 2005. 4 - Overview of Pulsed Electric Field Processing for Food. In: Emerging Technologies for Food Processing (Editor: D.W. Sun). Elsevier Ltd.,London, pp. 69-97.
[8] Donsì, F., Ferrari, G. and Pataro, G. 2010. Applications of Pulsed Electric Field Treatments for the Enhancement of Mass Transfer from Vegetable Tissue, Food Engineering Reviews. 2(2): 109-130.
[9] Yu, L. J., Ngadi, M. and Raghavan, G. S. V. 2009. Effect of temperature and pulsed electric field treatment on rennet coagulation properties of milk. Journal of Food Engineering, 79, 559 -558.
[10] Grimi N., Mamouni F., Lebovka N., Vorobiev E., Vaxelaire J., 2011, Impact of apple processing modes on extracted juice quality: Pressing assisted by pulsed electric fields, Journal of Food Engineering, 103: 52–61.
[11] Jaeger H., Schulz M., Lu P., Knorr D. 2012. Adjustment of milling, mash electroporation and pressing for the development of a PEF assisted juice production in industrial scale, Innovative Food Science and Emerging Technologies, 14, 46–60.
[12] Bobinaite R., Pataro G., Lamanauskas N., Šatkauskas S., Viškelis P. and Ferrari G. 2015. Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products, Journal of Food Science and Technology. 52(9): 5898-5905.
[13] Knorr, D., Angersbachm A., Eshtiaghi, M., Heinz, V. and Lee, D. U. 2001. Processing concept based on high intensity electric field pulses. Trends in Food Science and Technology, 12:129-135.
[14] Zimmerman, U., Riemann, F. and Pilwat, G. 1976. Enzyme loading of electrically homogeneous human red blood cell ghosts prepared by dielectric breakdown. Biochemical and Biophysical Acts, 436: 460-474.
[15] Parniakov, O., Roselló-Soto, E., Barba, F. J., Grimi, N., Lebovka, N. and Vorobiev, E. 2015. Newapproaches for the effective valorization of papaya seeds: Extraction of proteins, phenolic compounds, carbohydrates, and isothiocyanates assisted by pulsed electric energy. Food Research International, 77 (4): 711–717.
[16] Shaddel, R., Maskooki, A. M., Haddad-Khodaparast, M. H., Azadmard-Damirchi S., Mohamadi, M., and Fathi-Achachlouei, B. 2014. Optimization of extraction process of bioactive compounds from Bene hull using subcritical water. Food Science and Biotechnology, 23 (5):1459-1468.
[17] Jiménez, C. D. C., Flores, C. S., He, J., Tian, Q., Schwartz. S. J., and Giusti, M. M. 2011. Characterisation and preliminary bioactivity determination of Berberis boliviana Lechler fruit anthocyanins. Food Chemistry, 128:717–724.
[18] Dolatabadi, Z., Elhami Rad, A. H., Farzaneh, V., Akhlaghi Feizabad, S. H., Estiri, S. H., and Bakhshabadi, H. 2016. Modeling of the lycopene extraction from tomato pulps. Food Chemistry, 190: 968-973.
[19] Yildirim, A., Mavi, A., and Kara, A. A. 2001. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. Agricultural and Food Chemistry, 49: 4083-40.
[20] Wrolstad R.E. 1976. Color and pigment nalysis in fruit products. Station Bull. 621.Agric.Exp.Sta.Oregon Sta. University.
[21] ISIRI. 2001. Iranian Institution of Standard and Industrial Researches. barberry fruit. Standard no. 3337.
[22] AOAC. 2008. Official methods of analysis of the association of official analytical chemists, Vol. II. Arlington, VA: Association of Official Analytical Chemists.
[23]. Sarkis, J.R., Boussetta, N., Blouet, C., Tessaro, I.C., Ferreira Marczak, L.D. and Vorobiev, E. 2015. Effect of pulsed electric fields and high voltage electrical discharges on polyphenol and protein extraction from sesame cake. Innovative Food Science and Emerging Technologies. 29: 170–177.
[24] Rahman, M. S. 2015. Handbook of Food Preservation. CRC Press Taylor & Francis Group, 287-858.
[25] Brennan, J. G. 2011. Food Processing Handbook. WILEY-VCH Verlag GmbH & Co. KGaA, 645- 657.
[26] Guderjan, M., Elez-Martínez, P. and Knorr, D. 2007. Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil. Innovative Food Science and Emerging Technologies, 8: 55-62.
[27] Parniakov, O., Roselló-Soto, E., Barba, F. J., Grimi, N., Lebovka, N. and Vorobiev, E. 2015. Newapproaches for the effective valorization of papaya seeds: Extraction of proteins, phenolic compounds, carbohydrates, and isothiocyanates assisted by pulsed electric energy. Food Research International, 77 (4): 711–717.
[28] Azimzadeh, B., Jahadi, M., and Fazel, M. 2017. Antioxidant and antibacterial effects of laurus nobilis aqueous extract again Staphylococcus aureus and Escherichia coli. Journal of Food Hygiene, 7(25): 65-73.
[29] Wiktor, A., Sledz, M., Nowacka, M., Rybak, K., Chudoba, T., Lojkowski, W. and Witrowa-Rajchert, D. 2015. The impact of pulsed electric field treatment on selected bioactive compound content and color of plant tissue. Innovative Food Science and Emerging Technologies, 30: 69–78.
[30] Simpson, M. V., Barbosa-Cánovas, G. V., and Swanson, B. G. 1995. Influence of PEF on the composition of apple juice. Internal Report, Washington State University, Pullman, WA.
[31] Raso, J. and Heinz, V. 2007, Pulse Electric Fields Technology for the Food Industry. Fundamentals and Applications, 3(8): 144-146.