بررسی کینتیک جوانه زنی و رشد شعاعی کپک آسپرژیلوس فومیگاتوس جدا شده از کیک روغنی تحت شرایط مختلف فعالیت آبی و دما

نویسندگان
گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
چکیده
در این پژوهش اثر فعالیت آبی (9/0-65/0) و دما (30-15 درجه سانتیگراد) و اثر متقابل این دو بر کینتیک سرعت جوانه­زنی و رشد شعاعی کپک آسپرژیلوس فومیگاتوس جدا شده از کیک روغنی صنعتی در محیط کشت عصاره مخمر گلوکز کلرامفینیکول آگار طی 60 روز و همچنین قابلیت مدل­های گومپرتز و لوجستیک برای برازش داده­ها مورد ارزیابی قرار گرفتند. به طوری که افزایش فعالیت آبی در محدوده مورد بررسی و دما (15 تا 25 درجه سانتیگراد) باعث افزایش سرعت جوانه­زنی و رشد شعاعی کپک آسپرژیلوس فومیگاتوس شد (05/0 > P). در aw ثابت، افزایش درجه حرارت از دمای 25 تا 30 درجه سانتیگراد باعث کاهش معنی­دار این دو پارامتر شد (05/0 > P). کپک آسپرژیلوس فومیگاتوس در فعالیت آبی 65/0 وارد مرحله جوانه­زنی نشد. در فعالیت آبی 7/0 و 75/0 نیز تنها در دمای 15 و 25 درجه سانتیگراد جوانه­زنی رخ داد اما رشد شعاعی میسلیوم مشاهده نشد. در فعالیت آبی 8/0 نیز با وجود این که سرعت جوانه­زنی نسبتا بالا بود اما رشد میسلیوم به مقدار بسیار محدودی مشاهده شد. بیشترین میزان جوانه­زنی و همچنین رشد شعاعی مربوط به فعالیت آبی 85/0 و 9/0 و دمای 15 و 25 درجه سانتیگراد بود (05/0 > P). بنابراین بهینه رشد کپک آسپرژیلوس فومیگاتوس در دمای 25 درجه سانتیگراد و فعالیت آبی 9/0 مشاهده شد. با توجه به بسته­بندی کیک که نسبت به رطوبت محیط نفوذناپذیر است بهترین زمان ماندگاری کیک در aw برابر 7/0 توصیه می­شود. برازش منحنی­های رشد نیز نشان داد که پارامترهای به دست آمده از مدل لوجیستیک دقیق­تر از پارمترهای مدل گومپرتز است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the germination and growth kinetic of Aspergillus fumigatus isolated from cake under different conditions of aw and temperature

نویسندگان English

Hassan Nakhchian
farideh tabatabaei yazdi
Seyed Ali Mortazavi
Mohebbat Mohebbi
Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad
چکیده English

The impact of aw (0.65-0.9), temperature (15-30°C) and their interaction on the germination and radius growth of Aspergillus fumigatus isolated from cake was surveyed on Yeast Extract Glucose Chloramphenicol Agar (YGC-Agar) during 60 days as well as the capabilities of Gompertz and Logistic models for fitting data were explored. Rising aw (from 0.65 to 0.9) and temperature (from 15 to 25°C) caused significant enhancing of germination and growth rate of A. fumigatus (P < 0.05). However, in constant aws, further increasing of temperature (up to 30°C) led to meaningful decreasing of these parameters (P < 0.05). A. fumigatus did not germinate at aw 0.65. In addition, germination was observed at aw 0.7 and 0.75 only when the temperature was 15 and 25°C while the mycelium growth was not occurred at these conditions. Although the germination rate was relatively high at aw 0.8, the mycelium growth was very limited. The most amount of germination and radius growth was for aw 0.85 -0.9 and temperature 15-25°C (P < 0.05). Consequently, the optimum growth of A. fumigatus was seen at aw 0.9 and temperature 25°C and the best shelf life of cake proved at aw < 0.7. Furthermore, fitting the growth curves demonstrated the more accuracy of Logistic model rather than Gomperts model.

کلیدواژه‌ها English

Germination
Water activity
mold
Cake
Modelling
Smith, J.P., Daifas, D.P., El-Khoury,W., Koukoutsis, J. and El- Khoury, A. 2004. Critical Reviews in Food Science and Nutrition. Crit. Rev. Food Sci. Nutr. 44, 19–55.
[2] Beckett, A. 2012. Bread and baked goods: Executive summary. Mintel Group Ltd. Retrieved November 11, 2013 Mintel Reports database.
[3] Bakeries: Industry Snapshot." Center for Economic Vitality. Western Washington University College of Business and Economics, June 2011. Web. 15 Oct. 2012.
[4] Fatemi Amin, S.R., Mortezayi, A. 1392. Supply chain strategy for food products Strategic, a plan for industry, mining and trade. Iranian Academic center for education, culture and research, Tehran, Iran.
[5] Seiler, D., 1988. Microbiological problems associated with cereal based foods. Food and Science Technology Today, 2, 37– 41.
[6] Beuchat, L.R., Hocking, A.D. 1990. Some consideration when analyzing foods for the presence of xerophilic fungi, Journal of Food Protection, 53 (11), 984–989.
[7] Pitt, J.I., Hocking, A.D., 1997. Fungi and Food Spoilage, 2nd ed. Aspen Publishers, Gaithersburg, MD, USA.
[8] Fustier, P., Lafond, A., Champagne, C.P., Lamarche, F., 1998. Effect of inoculation techniques and relative humidity on the growth of moulds on the surfaces on yellow layer cakes. Applied and Environmental Microbiology, 64(1), 192–196.
[9] Legan, J. D., & Voysey, P. A. 1991. Yeast spoilage of bakery products and ingredients. Journal of Applied Bacteriology, 70, 361–371.
[10] Kerr, W.L., Kerr, C.A. 2015. Electrostatic spraying of potassium sorbate for the reduction of yeast and molds on cakes, International journal of food processing and preservation, 39, 2171-2179.
[11] Alipoor, M., Mehdizadeh, M. 1377. Bacterial and fungal contamination of food, Arkan press, Isfahan, Iran.
[12] Abellana, M., Torres, L., Sanchis V. and Ramos, A.J. 1997. Caracterización de diferentes productos de bollerıa industrial. II. Estudio de la micoflora. Alimentaria 287, 51–56.
[13] Poonnakasem, N. 2016. Effect of HPMC Addition and Modified Atmosphere Packaging on the Qualities of Chilled Pound Cake, Journal of culinary science and technology, 1-11.
[14] Robertson, G.L. 2013. Modified atmosphere packaging. In Food Packaging: Principles and Practice, 3rd Ed., pp. 429–443, CRC Press, Boca Raton, FL.
[15] Janjarasskul, T., Tananuwong, K., Kongpensook, V., Tantratian, S., Kokpol, S. "Shelf life extension of sponge cake by active packaging as an alternative to direct addition of chemical preservatives." LWT-Food Science and Technology 72 (2016): 166-174.
[16] BINTSIS, T., LITOPOULOU-TZANETAKI, E. and ROBINSON, R.K. 2000. Existing and potential applications of ultraviolet light in the food industry – a critical review. Journal of the Science of Food and Agriculture. 80(6), 637–645.
[17] Lakins, D.G., Echeverry, A., Alvarado, C.Z., Brooks, J.C., Brashears, M.T. and Brashears, M.M. 2008. Quality of and mold growth on white enriched bread for military rations following directional microwave treatment. Journal of Food Science. 73(3), M99–M103.
[18] Seiler, D.A.L. 1968. Prolonging the shelf life of cake. Br. Baker 156, 25–26.
[19] Oms-Oliu, G., Martin-Belloso, O. and Soliva-Fortuny, R. 2010. Pulsed light treatments for food preservation. Food and Bioprocess Technology. 3, 13–23.
[20] Gould, G.W. (1995) New Methods of Food Preservation. London: Chapman & Hall.
[21] Abellana, M., Benedi, V., Sanchis, V. and Ramos, A.J. 1999. Water activity and temperature effects on germination and growth of Eurotium amstelodami, E. chevalieri and E. herbariorum isolates from bakery products. Journal of Applied Microbiology. 87: 371-380.
[22] Lahlahi, R., Serrhini, M.N., Friel, D., Jijakli, M.H. 2007. Predictive modeling of temperature and water activity (solutes) on the in vitro radial growth of Botirytis cinera, Pers. International Journal of Food Microbiology. 114(1):1-9.
[23] Wheeler, K.A. and Hocking, A.D. 1988. Water relations of Paecilomyces variotii, Eurotium amstelodami, Aspergillus candidus and Aspergillus sydowii, xerophilic fungi isolated from Indonesian dried fish. International Journal of Food Microbiology, 7, 73–78.
[24] Beuchat, L.R. 1983. Influence of water activity on growth, metabolic activities and survival of yeasts and molds. Journal of Food Protection 46, 135–141.
[25] Prescott L. M. ,Harley J. P. ,Klein D. A. , 2004, Microbiology, McGraw-Hill Science, Engineering, Math; 6 edition.
[26] Magan, N. and Lacey, J. 1988. Ecological determinants of mould growth in stored grain. International Journal of Food Microbiology, 7, 245–256.
[27] Almeida, A. P., correa, B., M. A. B. Mallozzi, E. Sawazaki and L. M. ValenteSoares. 2000. Mycoflora and aflatoxin/fumonisin production by fungal isolates from freshly harvested corn hybrids. Brazilian Journal of Microbiology, 31.321-326.
[28] Idress, H. A., Laith, K. T. A., Muftah, A. N., Ibrahaim, A. A. B., Maziah, Z,. Saad, S. M., Maraghy, E. L. and Razaul, S. M. K. 2010. Screening of Fungi Asocciated with Commercial Grains and Animal Feed in Al_Bayda Governorate Libiya . World Applied Sciences Journal. 9(7):746-756.
[29] Harrigan, W., 1998. Laboratory Methods in Food Microbiology.Academic Press, San Diego, pp. 359–375.
[30] Choi, Y., Hyde, M. K. D. and Ho, W, H. 1999. Single spore isolation of fungi. Fungal Diversity, 3: 29-38.
[31] Fisher, F., Cook, N. B. Fundarmentals of diagnostic mycology. Philadelphia: Saunders WB.; 1998.
[32] Hocking, A.D., Pitt, J.I., 1980. Dichloran-glycerol medium for enumeration of xerophilic fungi from low-moisture foods. Applied Environmental Microbiology. 39, 488–492.
[33] Marín, S., Maganb, N., Abellanaa, M., Canelac, R., Ramosa, A. J. and Sanchis, V. 2000. Selective effect of propionates and water activity on maize mycoflora and impact on fumonisin B1 accumulation. Journal of Stored Products Research. 36: 203-214.
[34] Gougouli, M., Koutsoumanis, K. P. 2010. Modelling growth of Penicillium expansum and Aspergillus niger at constant and fluctuating temperature conditions, International Journal of Food Microbiology 140: 254–262
[35] Gougouli, M., Kalantzi, K., Beletsiotis, E., Koutsoumanis, K. P. 2011. Development and application of predictive models for fungal growth as tools to improve quality control in yogurt production, Food Microbiology 28:1453-1462
[36] Baert K., Valero A., De Meulenaer B., Samapundo S., Morshed Ahmed M., Bo L., Debevere J., Devlieghere F., (2007), Modeling the effect of temperature on the growth rate and lag phase of Penicillium expansum in apples, International Journal of Food Microbiology, 118: 139–150.
[37] Marin, S., Sanchis, V., Sáenz, R., Ramos, A.J., Vinas, I. and Magan, N. 1998. Ecological determinants for germination and growth of some Aspergillus and Penicillium spp. from maize grain. Journal of Applied Microbiology 84, 25–36.
[38] Zwietering, M.H., Jongenburger, I., Rombouts, F.M. and Van’t Riet, K. 1990. Modelling of the bacterial growth curve. Applied and Environmental Microbiology 56, 1875–1881.
[39] Dantigny, P., Marin, S., Beyer, M., Magan, N. 2007. Mould germination: Data treatment and modelling, International Journal of Food Microbiology 114: 17–24.
[40] Dantigny, P., Guilmart, A., Bensoussan, M., 2005. Basis of predictive mycology. International Journal of Food Microbiology. 100(1-3), 187-196.
[41] Gougouli, M., Koutsoumanis, K.P., 2013. Relation between germination and mycelium growth of individual fungal spores, International Journal of Food Microbiology. 161, 231-239.
[42] Gock, M. A., Hocking, A. D., Pitt, J. I., Poulos, P. G. 2003. Influence of temperature, water activity and pH on growth of some xerophilic fungi, International journal of food microbiology, 81 (1): 11-19.
[43] Gibson, A.M., Baranyi, J., Pitt, J.I., Eyles, M.J., Roberts, T.A., 1994. Predicting fungal growth: the effect of water activity on Aspergillus flaÕus and related species. International Journal of Food Microbiology. 23, 419–431.
[44] Holmquist, G.U., Walker, H.W., Stahr, H.M., 1983. Influence of temperature, pH, water activity and antifungal agents on growth of Aspergillus flaÕus and A. parasiticus. Journal of Food Science, 48, 778–782.
[45] Huang, Y., Begum, M., Chapman, B., Hocking, A.D., 2010. Effect of reduced water activity and reduced matrix potential on the germination and growth of xerophilic and non-xerophilic fungi. International Journal of Food Microbiology, 140, 1–5.
[46] Judet, D., Bensoussan, M., Perrier-Cornet, J.M., Dantigny, P., 2008. Distributions of the growth rate of the germ tubes and germination time of Penicillium chrysogenum conidia depend on water activity. Food Microbiology, 25, 902–907.
[47] Schubert, M., Mourad, S., Schwarze, F.W.M.R., 2010. Statistical approach to determine the effect of combined environmental parameters on conidial development of Trichoderma atroviride (T-15603.1). Journal of Basic Microbiology, 50, 1–11.