مدل‌سازی سطح پاسخ تغییرات افت وزن، ویتامین ث و ویژگی‌های رنگی دانه‌های انار (رقم شهسوار یزدی) طی فرآیند خشک کردن فرو سرخ

نویسندگان
1 استادیار، گروه مهندسی ‌علوم و صنایع غذایی، دانشکده صنایع غذایی بهار، دانشگاه بوعلی سینا، همدان، ایران.
2 استادیار، گروه مهندسی ‌علوم و صنایع غذایی، دانشکده فنی و منابع طبیعی تویسرکان، دانشگاه بوعلی سینا، همدان، ایران
3 دانش آموخته کارشناسی، گروه مهندسی ‌علوم و صنایع غذایی، دانشکده فنی و منابع طبیعی تویسرکان، دانشگاه بوعلی سینا، همدان، ایران.
چکیده
خشک کردن یکی از قدیمی‌ترین روش‌های نگهداری مواد غذایی است که معمولا موجب تغییرات نامطلوبی در خواص فیزیکوشیمیایی و ارزش تغذیه‌ای محصول نیز می‌شود. امروزه برای جلوگیری یا کاهش تغییرات نامطلوب ماده غذایی در حین خشک کردن تمایل به استفاده از روش‌های سریع خشک کردن نظیر استفاده از امواج مایکروویو و پرتوهای فرو سرخ افزایش یافته است. در این تحقیق تأثیر دما و زمان خشک کردن فرو سرخ بر میزان افت وزن، ویتامین ث و خواص رنگی دانه‌های انار رقم شهسوار یزدی بررسی و با روش سطح پاسخ بهینه سازی شد. نتایج نشان داد که با افزایش زمان و دمای خشک کردن میزان افت وزن و فاکتور رنگی L* نمونه‌های انار دان افزایش یافت در حالیکه مقدار ویتامین ث کاهش یافت. دمای خشک کردن تأثیر بیشتری بر تغییرات افت وزن و ویتامین ث در مقایسه با زمان خشک کردن داشت اما تغییرات فاکتور رنگی L* تحت تأثیر زمان خشک کردن فرو سرخ شدیدتر از دمای خشک کردن می‌باشد. فاکتورهای رنگی a* و b* با افزایش دمای خشک کردن افزایش یافتند در حالی که با افزایش زمان خشک کردن فرو سرخ کاهش یافتند. بهترین شرایط برای خشک کردن فرو سرخ دانه‌های انار دان شامل استفاده از دمای 55 درجه سانتی‌گراد و زمان خشک کردن 600 دقیقه می‌باشد و با اعمال شرایط بهینه میزان افت وزن، ویتامین ث و اختلاف رنگ کلی (DE) دانه‌های انار دان تولیدی به ترتیب برابر 5/69، 89/12 و 79/5 می‌باشد. نتایج اعتبار سنجی شرایط بهینه نشان داد که با اعمال شرایط بدست آمده از بهینه سازی، ویژگی‌های کیفی انار دان نظیر افت وزن، میزان ویتامین ث، و اختلاف رنگ کلی (DE) نمونه‌های تولیدی به ترتیب برابر 70، 45/12 و 75/7 به دست آمد که بسیار مشابه با نتایج مربوط به شرایط بهینه پیش بینی شده با روش سطح پاسخ می‌باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Response surface modeling of the pomegranate arils (Shahsavar Yazdi cultivar) weight loss, vitamin C and color characteristics variation during the infrared drying process

نویسندگان English

Narjes Aghajani 1
Amir Daraei Garmakhany 2
Omid hedayati Dezfouli 3
1 Assistant Prof. Department of Food Science and Technology, Bahar Faculty of Food Science and Technology, Bu-Ali Sina University, Hamadan, Iran.
2 Assistant Prof. Department of Food Science and Technology, Toyserkan Faculty of Engineering and natural resources, Bu-Ali Sina University, Hamadan, Iran.
3 Graduated student, Department of Food Science and Technology, Toyserkan Faculty of Engineering and natural resources, Bu-Ali Sina University, Hamadan, Iran.
چکیده English

Drying is one of the oldest methods of food preservation, which usually have adverse effect on the physicochemical properties and nutritional value of the final product too. Today, the demand for application of rapid drying methods such as using microwave and infrared beams has increased to prevent or reduce undesirable changes in foods. In this study, the effect of infrared drying process condition (drying temperature and time) on weight loss, vitamin C and color properties of Shahsavar Yazdi pomegranate arils were investigated and optimized by response surface method. The results showed that the amount of weight loss and L* value of pomegranate samples, increased with increasing drying time and temperature, while the amount of vitamin C decreased. Drying temperature had a greater effect on weight loss and vitamin C changes compared to drying time; however, variation of L* value under the influence of infrared drying time are more severe than the drying temperature. The amount of a* and b* value increased with increasing drying temperature while decreased with increasing infrared drying time. The best conditions for infrared drying of pomegranate arils are using drying temprature of 55 °C for 600 minutes and by applying the optimal conditions, the amount of weight loss, vitamin C and the total color difference (DE) of the produced pomegranate arils are equal to 69.5, 12.89 and 5.79 respectively. The results of the optimal conditions validation test showed that by applying the obtained conditions from the optimization process, the quality attributes of pomegranate such as weight loss, amount of vitamin C and the total color difference (DE) of the produced samples were 70, 12.45 and 7.75 respectively, which are very similar to the obtained results from the optimal conditions predicted by the response surface method.

کلیدواژه‌ها English

Weight loss
Pomegranate arils
Infrared drying
Response surface method
[1] Pirhayati, A., Daraei garmakhany, A., Gholami, M., Mirzakhani, A., and Khalilzadeh Ranjbar, G. 2019. Application of Aloe vera Gel Coating Enriched with Golpar Essential Oil on the Shelf Life of Peach Fruit (Prunus persica var, Zafarani). Iranian Journal of Nutrition Sciences and Food Technology, 13 (4) :75-88.
[2] Aghajani, N., Kashaninejad, M., Dehghani, A. A., and Daraei Garmakhany, A. 2012. Comparison between artificial neural networks and mathematical models for moisture ratio estimation in two varieties of green malt. Quality Assurance and Safety of Crops and Foods, 4(2): 93–101.
[3] Mwithiga, G., and Olwal, J. O. 2005. The drying kinetics of kale (Brassica oleracea) in a convective hot air dryer. Journal of Food Engineering, 71(4): 373–378.
[4] Mazandarani, Z., Aghajani, N., Garmakhany, A. D., Ardalan, M. J. B., and Nouri, M. 2017. Mathematical Modeling of Thin Layer Drying of Pomegranate (Punica granatum L.) Arils: Various Drying Methods. Journal of Agricultural Science and Technology, 19(7): 1527-1537.
[5] Lee, J., Durst, R. W., and Wrolstad, R. E. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. Journal of AOAC International, 88(5): 1269–1278.
[6] Erdogdu, F., and Balaban, M. O. 2003. Complex method for nonlinear constrained multi-criteria (multi-objective function) optimization of thermal processing. Journal of Food Process Engineering, 26(4): 357–375.
[7] Álvarez, J. M., Canessa, P., Mancilla, R. A., Polanco, R., Santibáñez, P. A., and Vicuña, R. 2009. Expression of genes encoding laccase and manganese-dependent peroxidase in the fungus Ceriporiopsis subvermispora is mediated by an ACE1-like copper-fist transcription factor. Fungal Genetics and Biology, 46(1): 104–111.
[8] Mujumdar, A. S. 2007. Book Review: Handbook of Industrial Drying, Third Edition. Drying Technology, 25(6): 1133–1134.
[9] Salehi, F., and Kashaninejad, M. 2018. Thin layer drying of tomato slices using a combined infrared-vacuum dryer. Food Science and Technology, 15 (82): 119-127
[10] Salehi, F., Asadi Amirabadi, A., and Kashaninejad, M. 2017. Modeling of Eggplant Drying Process by Infrared System using Genetic Algorithm–Artificial Neural Network Method. Electronic Journal of Food Processing and Preservation, 9 (1): 85-96.
[11] Ebrahim Taghinezhad, E., and Rasooli Sharabiani, V. 2017. The effect of combination dryer of hot air – infrared and microwave on some quality properties of parboiled rice. Food Innovation Technology, 5(1): 25-38.
[12] Amir Nejat, H., Khoshtaghaza, M.H., and Pahlavanzadeh, H. 2011. A Determination of Thin Layer Drying Kinetics of Button Mushroom when Dried through an Infrared Applied Drying Method. Iranian Journal of Biosystem Engineering, 42(1): 53-61.
[13] Salehi, F. 2019. Modeling of apricot weight loss during drying with infrared dryer using genetic algorithm-artificial neural network optimization methods. Journal of Food Research, 29(1): 55-69.
[14] Aghajani, N., Kashiri, M., Daraei Garmakhany, A., Moharami, M., and Dalvi, M. 2012. Treatments influencing quality attributes and separation time of pomegranate arils. Minerva Biotecnologica, 24(1):1-4.
[15] Shamloo, M. M., Sharifani, M., Daraei Garmakhany, A., and Seifi, E. 2015. Alternation of secondary metabolites and quality attributes in Valencia Orange fruit (Citrus sinensis) as influenced by storage period and edible covers. Journal of Food Science and Technology, 52(4): 1936–1947.
[16] Egan, H., R. S. Kirk., and R. Sawyer. 1985. Pearson’s Chemical Analysis of Foods. 8th ed., Churchill Livingstone Ltd., UK.
[17] Modares, B., Ramin, A. A., Ghobadi, S., and Khoshbakht, D. 2013. Comparison of the Effect of 1-MCP and Low-Pressure Air on Shelflife of Strawberry Fruit (Fragaria ananassa cv. Camarossa). Journal of Crop Production and Processing, 3 (9):189-204.
[18] Hashemi Shahraki, M., Mashkour, M., and Garmakhany, A. D. 2014. Development and application of a computer vision system for the measurement of the colour of Iranian sweet bread. Quality Assurance and Safety of Crops and Foods, 6(1): 33–40.
[19] Akhlaghan, Z., Oladghaffari, A., and Azadmard Damirchi, S. 2018. Effect of different drying pretreatments of carrot discards on quality characteristics of obtained powder upon storage. Food Innovation Technology, 5(4): 557-566.
[20] Białobrzewski, I. 2006. Determination of the heat transfer coefficient by inverse problem formulation during celery root drying. Journal of Food Engineering, 74(3): 383–391.
[21] Nisha, P., Shinghal, R. S., and Panditt, A. B. 2004. A study on degradation kinetic of ascorbic acid in amla (Phyllanthus emblica L.) during cooking. International Journal of Food Sciences and Nutrition, 55(5): 415–422.
[22] Devahastin, S., and Niamnuy, C. 2010. Modelling quality changes of fruits and vegetables during drying: A review. International Journal of Food Science and Technology, 45(9): 1755–1767.
[23] Contreras, C., Martín-Esparza, M. E., Chiralt, A., and Martínez-Navarrete, N. 2008. Influence of microwave application on convective drying: Effects on drying kinetics, and optical and mechanical properties of apple and strawberry. Journal of Food Engineering, 88(1): 55-64.