بررسی تاثیر استفاده از پودر عصاره چوبک بر ویژگی‌های فیزیکوشیمیایی و حسی شیر یخ

نویسندگان
1 گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی واحد نیشابور، نیشابور، ایران
2 گروه فراوری موادغذایی، موسسه پژوهشی علوم وصنایع غذایی، مشهد، ایران
چکیده
شیر یخ یک فرآورده لبنی منجمد با چربی کم است که قیمت آن به مراتب کمتر از بستنی می­باشد. بافت محصولات کم چرب، یکی از اساسی ترین مسائل در مورد بازارپسندی این محصولات می­باشد. پژوهش­های زیادی درباره استفاده از سورفکتانت­ها در فرمولاسیون بستنی صورت گرفته که نشان دهنده قابلیت این ترکیبات در افزایش قوام و قابلیت همزدن و هوادهی، بهبود مقاومت در برابر ذوب، ایجاد بافت نرمتر و خامه ای تر، افزایش حجم ناشی از مقدار هوای بیشتر و ایجاد کفی پایدارتر می­باشد. مطالعه حاضر به بررسی تأثیر افزودن پودر عصاره ریشه چوبک به شیر یخ بر کیفیت این محصول پرداخته است. آمیخته شیر یخ با غلظت­های مختلف پودر عصاره چوبک (0 ، 15/0 ، 30/0 و 45/0 درصد) تولید شد و تغییرات ایجاد شده در ویژگی­های فیزیکوشیمیایی و حسی شیر یخ بررسی شد. نتایج نشان داد که افزایش غلظت عصاره در شیر یخ باعث افزایش ضریب قوام، ضریب افزایش حجم، مقاومت به ذوب، خامه­ای بودن و پذیرش کلی می­شود، درحالی­که مقادیر شاخص رفتار جریان، سفتی، چسبندگی، زبری و سردی کاهش می­یابد. این نتایج را می­توان به افزایش جذب آب، بهبود قابلیت هم زدن، افزایش ناپایداری چربی و کریستال­های یخ کوچکتر مرتبط دانست. ارزیابی حسی نشان داد که شیر یخ حاوی 45/0 پودر عصاره ریشه چوبک بیشترین پذیرش کلی را داشت و امتیازات بیشتری کسب کرد. می­توان نتیجه گرفت که استفاده از پودر عصاره ریشه چوبک در تهیه شیر یخ می­تواند به خوبی ویژگی­های عملکردی محصول را بهبود بخشد تا بتواند جایگاه بالاتری در گروه برآورده­های لبنی منجمد بدست آورد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of the effect of using Chubak extract on physicochemical and sensory properties of ice milk

نویسندگان English

Sara Khosrow Shahi 1
Mohammad Ali Hesarinejad 2
Zohreh Didar 1
Mohsen Vazifedoost 1
1 Department of Food Science and Technology, Neyshabur branch, Islamic Azad University, Neyshabur, Iran
2 Department of Food Processing, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
چکیده English

Ice milk is a low-fat frozen dairy product, which is much cheaper than ice cream. The texture of low-fat products is one of the most important issues in the marketing of these products. There has been a lot of research on the use of surfactants in ice cream formulations, which shows the ability of these compounds to increase consistency and agitation and aeration, improve melting resistance, create a softer and creamier texture, and increase the overrun. The present study investigated the effect of adding Chubak root extract powder to ice milk on the quality of this product. Ice milk mixture was produced with different concentrations of Chubak extract powder (0, 0.015, 0.030 and 0.045 g/kg) and the changes in physicochemical and sensory properties of ice milk were investigated. The results showed that increasing the concentration of the extract in ice milk increased the consistency coefficient, overrun, melting resistance, creaminess and overall acceptance, while the values ​​of flow behavior index, hardness, adhesiveness, roughness and coldness decreased. These results can be related to increased water absorption, improved agitation, increased fat instability and smaller ice crystals. Sensory evaluation showed that ice milk containing 0.045 g/kg Chubak root extract powder had the highest overall acceptance and gained more scores. It can be concluded that the use of Chubak root extract powder in the preparation of ice milk can improve the functional characteristics of the product so that it can achieve a higher position in the group of frozen dairy products.

کلیدواژه‌ها English

Ice milk
Chubak extract
Physical properties
overrun
Sensory evaluation
[1] El Gazzar, H., Abd El Aziz, M., & Nasr, W. I. (2013). Effect of using germinated fenugreek on the quality of ice milk. Annals Of Agricultural Science Moshtohor Journal, 51 (2), 117-124.
[2] Ibrahim, S. A., El-Dairy, S. Y., & FiKry, S. A. (1994). The keeping quality of low calorie butter made with adding Kareish cheese or sodium caseinate. Egyptian Journal of Dairy Science, 22, 47-47.
[3] Giese, J. (1996). Fats, oils, and fat replacers. Food technology (Chicago), 50(4), 77-84.
[4] WHO, World Health Organization. 2003. Disease-specific recommendations, available at: http://www.who.int/nutrition/topics/5_population_nutrient/en/index12.html
[5] Food and Drug Administration (1994). International, Arlington,VA,U.S.A.
[6] Nitschke, M., & Costa, S. G. V. A. O. (2007). Biosurfactants in food industry. Trends in Food Science & Technology, 18(5), 252-259.
[7] Euston, S. R., & Goff, H. D. (2019). Emulsifiers in dairy products and dairy substitutes. In Food emulsifiers and their applications (pp. 217-254). Springer, Cham.
[8] Vijayakumar, S., & Saravanan, V. (2015). Biosurfactants-types, sources and applications. Research Journal of Microbiology, 10(5), 181.
[9] Rekvig, L., Kranenburg, M., Hafskjold, B., & Smit, B. (2003). Effect of surfactant structure on interfacial properties. EPL (Europhysics Letters), 63(6), 902. [10] Kralova, I., & Sjöblom, J. 2009. Surfactants used in food industry: a review. Journal of Dispersion Science & Technology, 30, 1363-1383.
[11] Mcclements, D. J. (2007). Critical review of techniques and methodologies for characterization of emulsion stability. Critical reviews in food science and nutrition, 47(7), 611-649.
[12] Walstra, P. (1991). Principles of emulsion formation. Editors: J. Laven, HN Stein, 77.
[13] Schubert, H., & Engel, R. (2004). Product and formulation engineering of emulsions. Chemical Engineering Research and Design, 82(9), 1137-1143.
[14] Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Re-coalescence of emulsion droplets during high-energy emulsification. Food hydrocolloids, 22(7), 1191-1202.
[15] Hasenhuettl, G. L., & Hartel, R. W. (Eds.). 2008. Food emulsifiers and their applications (Vol. 40, No. 6). New York: Springer.
[16] AlYousef, Z. A., Almobarky, M. A., & Schechter, D. S. 2018. The effect of nanoparticle aggregation on surfactant foam stability. Journal of Colloid & Interface Science, 511, 365-373.
[17] Kregiel, D., Berlowska, J., Witonska, I., Antolak, H., Proestos, C., Babic, M., & Zhang, B. 2017. Saponin-based, biological-active surfactants from plants. Application & Characterization of Surfactants, 183-205.
[18] Salminen, H., Bischoff, S., & Weiss, J. 2019. Impact of concentration ratio on the formation and stability of emulsions stabilized by Quillaja saponin–sodium caseinate mixtures. Food Biophysics, 14, 109-119.
[19] Ghaffari, S. M. 2004. Cytotaxonomy of some species of Acanthophyllum (Caryophyllaceae) from Iran. Biologia Bratislava, 59, 53-60.
[20] Jahanbin, K., Gohari, A. R., Moini, S., Emam-Djomeh, Z., & Masi, P. 2011. Isolation, structural characterization and antioxidant activity of a new water-soluble polysaccharide from Acanthophyllum bracteatum roots. International Journal of Biological Macromolecules, 49, 567-572.
[21] Jahanbin, K., Moini, S., Gohari, A. R., Emam-Djomeh, Z., & Masi, P. 2012. Isolation, purification and characterization of a new gum from Acanthophyllum bracteatum roots. Food Hydrocolloids, 27, 14-21.
[22] Khosrow Shahi, S., Didar, Z., Hesarinejad, M. A., & Vazifedoost, M. (2020). Optimized pulsed electric field‐assisted extraction of biosurfactants from Chubak (Acanthophyllum squarrosum) root and its application in ice cream. Journal of the Science of Food and Agriculture.
[23] Karazhiyan, H., & Keyhani, V. (2015). The effect of Chubak extract on sponge cake as an egg white substitute. Iranian Food Science and Technology Research Journal, 11 (1), 63-76.
[24] Keyhani, V., Mortazavi, S. A., Karimi, M., Karazhiyan, H., Sheikholeslami, Z. (2016). Ultrasound-assisted extraction of saponins from chubak plant (Acanthophyllum Glandulosum) root based on their emulsification and foaming properties. Journal of Research and Innovation in Food Science and Technology, 4(4), 325-342.
[25] Oladzadabbasabadi, N., Karazhiyan, H., & Keyhani, V. (2017). Addition of the Chubak extract and egg white on biophysical properties of grape juice during evaporation process. Journal of Food Process Engineering, 40(5), e12538.
[26] Karazhiyan, H. (2019). Chubak (Acanthophyllum glandulosum) Root Gum. Emerging Natural Hydrocolloids: Rheology and Functions, 371-396.
[27] Schmidt, K., Lundy, A., Reynolds, J., and Yee, L.N. 1993. Carbohydrate or protein based fat mimicker effects on ice milk properties, Journal of Food Science, 58: 761-763.
[28] Marshall, R. T., Goff, H. D., & Hartel, R. W. 2003. Ice cream, (3rd ed.). New York: Aspen Publishers.
[29] Sofjan, R. P., & Hartel, R. W. 2004. Effects of overrun on structural and physical characteristics of ice cream. International Dairy Journal, 14, 255-262.
[30] Syed, Q. A., Anwar, S., Shukat, R., & Zahoor, T. 2018. Effects of different ingredients on texture of ice cream. Journal of Nutritional Health & Food Engineering, 8, 422-435.
[31] Pelan, B. M. C., Watts, K. M., Campbell, I. J., & Lips, A. 1997. The stability of aerated milk protein emulsions in the presence of small molecule surfactants. Journal of Dairy Science, 80, 2631-2638.
[32] Warren, M. M., & Hartel, R. W. 2018. Effects of Emulsifier, overrun and dasher speed on ice cream microstructure and melting properties. Journal of Food Science, 83, 639-647.
[33] Yeon, S. J., Kim, J. H., Hong, G. E., Park, W., Kim, S. K., Seo, H. G., & Lee, C. H. 2017. Physical and sensory properties of ice cream containing fermented pepper powder. Korean Journal for Food Science of Animal Resources, 37, 38.
[34] Muse, M. R., & Hartel, R. W. 2004. Ice cream structural elements that affect melting rate and hardness. Journal of dairy science, 87, 1-10.
[35] Muzammil, H. S., Haider, S., Rasco, B., & Sublanis, S. 2015. Physicochemical properties of probiotic frozen yogurt with different levels of glycerol and overrun. International Journal of Development Research, 5, 3209-3213.
[36] Guinard, J.X., Zoumas-Morse, C., Mori, L., Panyam, D., Kilara, A. 1996. Effect of sugar and fat on the acceptability of vanilla ice cream. Journal of Dairy Science, 79, 1922-1927.
[37] Soukoulis, C., Chandrinos, I., & Tzia, C. 2008. Study of the functionality of selected hydrocolloids and their blends with κ-carrageenan on storage quality of vanilla ice cream. LWT-Food Science & Technology, 41, 1816-1827.
[38] Javidi, F., Razavi, S. M. A., Behrouzian, F., & Alghooneh, A. 2016. The influence of basil seed gum, guar gum and their blend on the rheological, physical and sensory properties of low-fat ice cream. Food Hydrocolloids, 52, 625-633.
[39] Javidi, F., & Razavi, S. M. 2018. Rheological, physical and sensory characteristics of light ice cream as affected by selected fat replacers. Journal of Food Measurement & Characterization, 12, 1872-1884.
[40] Clarke, C. 2004. Ice cream ingredients. In the science of ice cream, pp. 38-57. Cambridge: Royal Society of Chemistry Publishing.
[41] Akalin, A.S., Karagözlü, C., Ünal, G. 2008. Rheological properties of reduced-fat and low-fat ice cream containing whey protein isolate and inulin. European Food Research and Technology, 227, 889-895.
[42] Aime, D. B., Arintfied, S. D., Malcormson, L. J., & Ryland, D. 2001. Textural analysis of fat reduced vanilla ice cream products. Food research international, 34.2-3, 237-246.
[43] Karaka, O. B., GÜven, M., Yasar, K., Kaya, S., & Kahyaoglu, T. 2009. The functional, rheological and sensory characteristics of ice creams with various fat replacers. International Journal of Dairy Technology, 62, 93-99.
[44] BahramParvar, M., Haddad Khodaparast, M.H., & Razavi, S.M.A. 2010. Rheological characterization and sensory evaluation of typical soft ice cream made with selected food hydrocolloids. Food Science & Technology International, 16, 79–88.
[45] Goff, H. D. 1997. Colloidal aspects of ice cream—a review. International Dairy Journal, 7, 363-373.
[46] Briggs, J.L., Steffe, J.F., & Ustunol, Z. 1996. Van method evaluates the yield stress of frozen ice cream. Journal of Dairy Science, 79, 527-531.
[47] Emadzadeh, B., Razavi, S.M.A., & Hashemi, M. (2011). Viscous flow behavior of low-calorie pistachio butter: A response surface methodology. International Journal of Nuts & Related Sciences, 2, 37-47.
[48] Regand, A., & Goff, H. D. 2006. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. Journal of Dairy Science, 89, 49-57.
[49] Clarke, C. 2012. Ice cream: A complex composite material. In: The science of ice cream. Cambridge, England: published by the Royal Society of Chemistry.
[50] BahramParvar, M., & Goff, H. D. 2013. Basil seed gum as a novel stabilizer for structure formation and reduction of ice recrystallization in ice cream. Dairy Science & Technology, 93, 273–285.
[51] Varela, P., Pintor, A., & Fiszman, S. 2014. How hydrocolloids affect the temporal oral perception of ice cream. Food hydrocolloids, 36, 220-228.
[52] Sezgin, A. C., & Artik, N. 2010. Determination of saponin content in Turkish tahini halvah by using HPLC. Advance Journal Food Science & Technology, 2, 109-115.