مدلسازی ماندگاری پسته تازه رقم بادامی پوشش‌دهی شده با کیتوزان در شرایط بسته‌بندی اتمسفر اصلاح شده

نویسندگان
1 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
2 گروه فراوری موادغذایی، موسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران
چکیده
ماندگاری مدت زمانی است که تحت شرایط خاص با کاهش قابل قبول کیفیت ماده غذایی مطابقت دارد. این ویژگی به عوامل مختلف ذاتی و محیطی نظیر ماهیت ماده غذایی، فرآیندهای نگهداری، پوشش­دهی و نوع بسته­بندی بستگی دارد و بر پایداری محصول تأثیر می­گذارد. توانایی پیش­بینی زمان ماندگاری از ارزش تجاری قابل توجهی برخوردار است، اما هیچ روش قابل اتکایی برای این منظور در مورد پسته تازه وجود ندارد. پژوهش حاضر با هدف ایجاد مدل­های ریاضی به منظور پیش­بینی زمان ماندگاری مواد غذایی، با استفاده از نمونه­های پسته تازه رقم بادامی پوشش­دهی شده با پوشش خوراکی کیتوزان در غلظت­های متفاوت (صفر، 1 و 5/1 درصد) و تحت سه اتمسفر شامل هوای معمولی، مپ غیرفعال و مپ فعال انجام گردید. مطالعه زمان ماندگاری در دمای 5 درجه سانتیگراد انجام گرفت و یک پیش­بینی چند­ متغیره از ویژگی­های بافتی دستگاهی و حسی از طریق مدل­های سینتیک انجام گرفت. در این پژوهش، پسته تازه پوشش­دهی شده با 5/1درصد کیتوزان تحت شرایط بسته بندی مپ ­فعال، دارای بالاترین زمان ماندگاری پیش­بینی شده (86 روز) بود. همچنین، مدل­های مختلف بدست آمده توانستند زمان نرم شدن تا پایان مدت زمان ماندگاری را در شرایط مختلف پوشش­دهی و بسته­بندی پسته تازه به خوبی پیش­بینی کنند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Shelf life modeling of Badami's fresh pistachios coated with chitosan under modified atmosphere packaging conditions

نویسندگان English

Farnaz Rezaiyan Attar 1
Nasser Sedaghat 1
Samira Yeganehzad 2
Atena Pasban 1
Mohammad Ali Hesarinejad 2
1 Ferdowsi University of Mashhad
2 Research Institute of Food Science and Technology
چکیده English

Shelf life is the amount of time that corresponds to an acceptable reduction in food quality under certain conditions. This feature depends on various intrinsic and environmental factors such as the nature of the food, storage processes, coating and the type of packaging, and it affects the stability of the product. The ability to estimate shelf life is of considerable commercial value, but there is no reliable method for this purpose for fresh pistachios. The aim of this study was to create mathematical models to predict the shelf life of food, using Badami's fresh pistachio samples coated with chitosan edible coating in different concentrations (0, 1, and 1.5%) under three atmospheres including ambient atmospheric condition, passive MAP, and active MAP. The shelf life study was performed at 5°C and a multivariate prediction of instrumental and sensorial firmness was performed through kinetic models. In this study, fresh pistachios coated with 1.5% chitosan under active MAP had the highest estimated shelf life (86 days). Also, obtained models were able to estimate the softening time to the end-point of shelf life in different conditions of coating and packaging of fresh pistachios.

کلیدواژه‌ها English

Sensory evaluation
Modified atmosphere packaging
Fresh pistachios
texture
shelf life
[1] Garcia, J. M., Agar, I. T., & Streif, J. (1992). Fat content and fatty acid composition in individual seeds of pistachio varieties grown in Turkey. Gartenbauwissenschaft (Germany).
[2] Sedaghat, N., Mortazavi, A., Nasiri-Mahalati, M., Davarinejad, G.H. (2006). Prediction shelf life of pistachio nuts at various conditions. Journal of Agricultural Sciences and Natural Resources, 12(6), 127-135.
[3] Shaker Ardekani, A. (2007). Harvesting, processing, storage and packaging of pistachio. Iran Pistachio Research Institute. Printing. 158 pages.
[4] Correa, A. R., Quicazan, M., & Lodono, C. H. (2015). Modelling the shelf-life of apple products according to their water activity. Chemical Engineering Transactions, 43, 199-204.
[5] Maleki, G., Sedaghat, N., Farhoodi, M., & Mohebbi, M. (2019). Effects of Chitosan Coating and Modified Atmosphere Packaging on Quality Attributes of the Cucumber (Royal Cultivar) and Modeling the Vegetable Shelf-Life. Iranian Journal of Nutrition Sciences & Food Technology, 14(3), 51-62.
[6] Oliveira, A., Coelho, M., Alexandre, E. M., Gomes, M. H., Almeida, D. P., & Pintado, M. (2015). Effect of modified atmosphere on phytochemical profile of pasteurized peach purées. LWT-Food Science and Technology, 64(2), 520-527.
[7] Edalatian, M.R., Sedaghat, N., Sharif, A. (2007).Effect of temperature, packaging and time Storage on instrumental hardness and sensory evaluation of Ohadi pistachio variety. Iranian Journal of Food Science and Technology Research, 3(1), 7-14.
[8] Khatib, H., Mirdehghan, S.H., Doraki, N. (2008). The Effect of UV-C Irradiation on the Quality and Shelf Life of Fresh Pistachio Nut Cultivars (Ohadi and Akbari). Journal of Horticultural Science, 25 (4), 443-452.
[9] Sedaghat, N. (2004). Modeling of storage and packaging conditions of raw dry pistachio nuts. Ph.D dissertation. Ferdowsi University of Mashhad, Faculty of Agriculture.
[10] Polydera, A. C., Stoforos, N. G., & Taoukis, P. S. (2005). Quality degradation kinetics of pasteurised and high pressure processed fresh Navel orange juice: Nutritional parameters and shelf life. Innovative Food Science & Emerging Technologies, 6(1), 1-9.
[11] Palazón, M. A., Pérez-Conesa, D., Abellán, P., Ros, G., Romero, F., & Vidal, M. L. (2009). Determination of shelf-life of homogenized apple-based beikost storage at different temperatures using Weibull hazard model. LWT-Food Science and Technology, 42(1), 319-326.
[12] Montes Villanueva, N. D., & Trindade, M. A. (2010). Estimating sensory shelf life of chocolate and carrot cupcakes using acceptance tests. Journal of Sensory Studies, 25(2), 260-279.
[13] Muñoz, A.M., Civille, G.V. and Carr, B.T. (1992). Sensory Evaluation in Quality Control, Chap. 3, pp. 81–82, Van Nostrand Reinhold, New York, NY.
[14] Corrigan, V., Hedderley, D., & Harvey, W. (2012). Modeling the shelf life of fruit‐filled snack bars using survival analysis and sensory profiling techniques. Journal of sensory studies, 27(6), 403-416.
[15] Giménez, A., Varela, P., Salvador, A., Ares, G., Fiszman, S., & Garitta, L. (2007). Shelf life estimation of brown pan bread: A consumer approach. Food Quality and Preference, 18(2), 196-204.
[16] Curia, A., Aguerrido, M., Langohr, K., & Hough, G. (2005). Survival analysis applied to sensory shelf life of yogurts–I: Argentine formulations. Journal of food science, 70(7), s442-s445.
[17] Hough, G., Langohr, K., Gómez, G., & Curia, A. (2003). Survival analysis applied to sensory shelf life of foods. Journal of Food Science, 68(1), 359-362.
[18] Ali, A., Muhammad, M. T. M., Sijam, K., & Siddiqui, Y. (2011). Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food chemistry, 124(2), 620-626.
[19] Corradini, M. G., & Peleg, M. (2007). Shelf-life estimation from accelerated storage data. Trends in Food Science & Technology, 18(1), 37-47.
[20] Mizrahi, S. (2011). Accelerated shelf life testing of foods. In Food and beverage stability and shelf life (pp. 482-506). Woodhead Publishing.
[21] Mohammadi, A., Hashemi, M., & Hosseini, S. M. (2016). Integration between chitosan and Zataria multiflora or Cinnamomum zeylanicum essential oil for controlling Phytophthora drechsleri, the causal agent of cucumber fruit rot. LWT-Food Science and Technology, 65, 349-356.
[22] El Ghaouth, A., Ponnampalam, R., Castaigne, F., & Arul, J. (1992b). Chitosan coating to extend the storage life of tomatoes. Hortscience, 27, 1016–1018.
[23] Du, J., Gemma, H., & Iwahori, S. (1997). Effects of chitosan coating on the storage of peach, Japanese pear, and kiwifruit. Journal of the Japanese Society for Horticultural Science, 66(1), 15-22.
[24] Arnon, H., Zaitsev, Y., Porat, R., & Poverenov, E. (2014). Effects of carboxymethyl cellulose and chitosan bilayer edible coating on postharvest quality of citrus fruit. Postharvest Biology and Technology, 87, 21-26.
[25] Cháfer, M., Sánchez‐González, L., González‐Martínez, C., & Chiralt, A. (2012). Fungal decay and shelf life of oranges coated with chitosan and bergamot, thyme, and tea tree essential oils. Journal of food science, 77(8), E182-E187.
[26] Chien, P. J., Sheu, F., & Lin, H. R. (2007). Coating citrus (Murcott tangor) fruit with low molecular weight chitosan increases postharvest quality and shelf life. Food Chemistry, 100, 1160–1164.
[27] Hernandez-Munoz, P., Almenar, E., Del Valle, V., Velez, D., & Gavara, R. (2008). Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria× ananassa) quality during refrigerated storage. Food Chemistry, 110(2), 428-435.
[28] Qi, H., Hu, W., Jiang, A., Tian, M., & Li, Y. (2011). Extending shelf-life of fresh-cut ‘Fuji’apples with chitosan-coatings. Innovative Food Science & Emerging Technologies, 12(1), 62-66.
[29] Bill, M., Sivakumar, D., Korsten, L., & Thompson, A. K. (2014). The efficacy of combined application of edible coatings and thyme oil in inducing resistance components in avocado (Persea americana Mill.) against anthracnose during post-harvest storage. Crop Protection, 64, 159-167.
[30] Tesfay, S. Z., & Magwaza, L. S. (2017). Evaluating the efficacy of moringa leaf extract, chitosan and carboxymethyl cellulose as edible coatings for enhancing quality and extending postharvest life of avocado (Persea americana Mill.) fruit. Food Packaging and Shelf Life, 11, 40-48.
[31] Jiang, T., Feng, L., & Li, J. (2012). Changes in microbial and postharvest quality of shiitake mushroom (Lentinus edodes) treated with chitosan–glucose complex coating under cold storage. Food Chemistry, 131(3), 780-786.
[32] Martiñon, M. E., Moreira, R. G., Castell-Perez, M. E., & Gomes, C. (2014). Development of a multilayered antimicrobial edible coating for shelf-life extension of fresh-cut cantaloupe (Cucumis melo L.) stored at 4 C. LWT-Food Science and Technology, 56(2), 341-350.
[33] Poverenov, E., Zaitsev, Y., Arnon, H., Granit, R., Alkalai-Tuvia, S., Perzelan, Y., ... & Fallik, E. (2014). Effects of a composite chitosan–gelatin edible coating on postharvest quality and storability of red bell peppers. Postharvest biology and technology, 96, 106-109.
[34] Sánchez-González, L., Pastor, C., Vargas, M., Chiralt, A., González-Martínez, C., & Cháfer, M. (2011). Effect of hydroxypropylmethylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes. Postharvest Biology and Technology, 60(1), 57-63.
[35] Nakhasi, S., Schlimme, D., & Solomos, T. (1991). Storage potential of tomatoes harvested at the breaker stage using modified atmosphere packaging. Journal of Food Science, 56(1), 55-59.
[36] Santana, L. R. R. D., Benedetti, B. C., Sigrist, J. M. M., & Sato, H. H. (2011). Effects of modified atmosphere packaging on ripening of'Douradão'peach related to pectolytic enzymes activities and chilling injury symptoms. Revista Brasileira de Fruticultura, 33(4), 1084-1094.
[37] Sheikhi, A., Mirdehghan, S. H., & Ferguson, L. (2019). Extending storage potential of de‐hulled fresh pistachios in passive‐modified atmosphere. Journal of the Science of Food and Agriculture, 99(7), 3426-3433.
[38] Wang, J., Li, P., Gong, B., Li, S., & Ma, H. (2017). Phenol metabolism and preservation of fresh in‐hull walnut stored in modified atmosphere packaging. Journal of the Science of Food and Agriculture, 97(15), 5335-5342.
[39] Moscetti, R., Frangipane, M. T., Monarca, D., Cecchini, M., & Massantini, R. (2012). Maintaining the quality of unripe, fresh hazelnuts through storage under modified atmospheres. Postharvest biology and technology, 65, 33-38.
[40] García, J. M., Medina, R. J., & Olías, J. M. (1998). Quality of strawberries automatically packed in different plastic films. Journal of Food Science, 63(6), 1037-1041.
[41] Martínez‐Romero, D., Guillén, F., Castillo, S., Valero, D., & Serrano, M. (2003). Modified atmosphere packaging maintains quality of table grapes. Journal of Food Science, 68(5), 1838-1843.
[42] Manjunatha, M., & Anurag, R. K. (2014). Effect of modified atmosphere packaging and storage conditions on quality characteristics of cucumber. Journal of food science and technology, 51(11), 3470-3475.
[43] Gonzalez-Aguilar, G. A., Buta, J. G., & Wang, C. Y. (2003). Methyl jasmonate and modified atmosphere packaging (MAP) reduce decay and maintain postharvest quality of papaya ‘Sunrise’. Postharvest Biology and Technology, 28(3), 361-370.
[44] Jiang, T. (2013). Effect of alginate coating on physicochemical and sensory qualities of button mushrooms (Agaricus bisporus) under a high oxygen modified atmosphere. Postharvest Biology and Technology, 76, 91-97.
[45] Ghidelli, C., Mateos, M., Rojas-Argudo, C., & Pérez-Gago, M. B. (2014). Extending the shelf life of fresh-cut eggplant with a soy protein–cysteine based edible coating and modified atmosphere packaging. Postharvest biology and technology, 95, 81-87.
[46] Vargas, M., Chiralt, A., Albors, A., & González-Martínez, C. (2009). Effect of chitosan-based edible coatings applied by vacuum impregnation on quality preservation of fresh-cut carrot. Postharvest Biology and Technology, 51(2), 263-271.
[47] Xiao, C., Zhu, L., Luo, W., Song, X., & Deng, Y. (2010). Combined action of pure oxygen pretreatment and chitosan coating incorporated with rosemary extracts on the quality of fresh-cut pears. Food Chemistry, 121(4), 1003-1009.
[48] Hashemi-Sigari, M., Sedaghat, N., Shahidi, F., Hosseini, F. (2019). Investigation of the effect of modified atmospheric packaging and apricot gum on maintaining quality and increasing the shelf life of strawberries. Packaging science and technology, 10 (37), 36-47.
[49] Senesi, E., Prinzivalli, C., Sala, M., & Gennari, M. (2000). Physicochemical and microbiological changes in fresh-cut green bell peppers as affected by packaging and storage. Italian journal of food science, 12(1), 55-64.
[50] Shahdadi sardo, A., Sedaghat, N., Taghizadeh, M., Milani, E. (2017). Effect of packaging type and chitosan edible coating on the physico-chemical and sensory characteristics of Royal Greenhouse cucumber during storage conditions. Iranian Food Science and Technology Research Journal, 13(2), 363-378.
[51] Manolopoulou, H., Xanthopoulos, G., Douros, N., & Lambrinos, G. (2010). Modified atmosphere packaging storage of green bell peppers: Quality criteria. Biosystems engineering, 106(4), 535-543.
[52] Wang, C., Zhou, S., Du, Q., Qin, W., Wu, D., Raheem, D., ... & Zhang, Q. (2019). Shelf life prediction and food safety risk assessment of an innovative whole soybean curd based on predictive models. Journal of food science and technology, 56(9), 4233-4241.
[53] Poursharif, Z., Sedaghat, N., Shahidi, F. (2018). Shelf life Estimation of orange (Thompson’s Novel) with edible coating (Chitosan -Aloe vera) and modified atmosphere packaging. Journal of Food Science and Technology, 15(82), 151-165.
[54] Golly, M. K., Ma, H., Sarpong, F., Dotse, B. P., Oteng-Darko, P., & Dong, Y. (2019). Shelf-life extension of grape (Pinot noir) by xanthan gum enriched with ascorbic and citric acid during cold temperature storage. Journal of Food Science and Technology, 56(11), 4867-4878.
[55] Leizerson, S., & Shimoni, E. (2005). Stability and sensory shelf life of orange juice pasteurized by continuous ohmic heating. Journal of Agricultural and Food Chemistry, 53(10), 4012-4018.
[56] Zhi, N. N., Zong, K., Thakur, K., Qu, J., Shi, J. J., Yang, J. L., ... & Wei, Z. J. (2018). Development of a dynamic prediction model for shelf-life evaluation of yogurt by using physicochemical, microbiological and sensory parameters. CyTA-Journal of Food, 16(1), 42-49.