]1[ Li, J.-M., & Nie, S.-P. 2016. The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocolloids, 53: 46–61.
]2] Fathi, M., Mohebbi, M., and Koocheki, A. 2016. Introducing Prunus cerasus gum exudates: chemical structure, molecular weight, and rheological properties. Food Hydrocolloids, 61:946– 955.
]3[ Kapoor, M., Khandal, D., Seshadri, G. et al. 2013. Novel hydrocolloids: preparation& applications – a review. IJRRAS 16 (3): 432–482.
[4] Thombare, N., Jha, U., Mishra, S., & Siddiqui, M. Z. 2016. Guar gum as a promising starting material for diverse applications: A review. International Journal of Biological Macromolecules, 88:361–372.
[5] Mudgil, D., Barak, S., & Khatkar, B. S. 2012. Effect of enzymatic depolymerization on physicochemical and rheological properties of guar gum. Carbohydrate Polymers, 90(1):224– 228.
[6] Ma,S., Wang, Z.-h. 2013. Pulsed electric field-assisted modification of pectin from sugar beet pulp. Carbohydrate Polymers, 92(2):1700–1704.
[7] Mishra R, Bhatia S, Pal R, Visen A, Trivedi H. 2016. Cold plasma: emerging as the new standard in food safety. International Journal of Engineering Sciences, 6(2):15-20.
[8] Surowsky, B., Schlüter, O. and Knorr, D. 2015. Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: a review. Food Engineering Reviews, 7(2):82-108.
[9] Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., & Julak, J. 2015. Nonthermal plasma-A tool for decontamination and disinfection. Biotechnology Advances, 33(6 Pt 2): 1108-1119.
[10] Moreau, M., Orange, N. and Feuilloley, M. 2008. Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnology Advances,26(6):610-617.
[11] Conrads, H. and Schmidt, M. 2000. Plasma generation and plasma sources. Plasma Sources Science and Technology. 9:441.
[12] Fridman, A., Chirokov, A., & Gutsol, A. 2005. Non-thermal atmospheric pressure discharges. Journal of Physics D: Applied Physics, 38(2): R1–R24.
[13] Coutinho, N.M., Silveira, M.R., Rocha, R.S., Moraes, J., Ferreira, M.V.S., Pimentel, T.C., et al. 2018. Cold plasma processing of milk and dairy products. Trends in Food Science & Technology,74:56-68.
[14] Hertwig, C., Meneses, N., Mathys, A. 2018. Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: a review. Trends in Food Science & Technology,77:131-142.
[15] Naji,S., Razavi,S.M.A. 2014. Functional and textural characteristics of cress seed (Lepidiu sativum) gum and xanthan gum: Effect of refrigeration condition. Food Bioscience,5:1-8.
[16] Misra, N.N., Yong, H.I., Phalak, R. and Jo, C. 2018. Atmospheric pressure cold plasma improves viscosifying and emulsion stabilizing properties of xanthan gum.Food Hydrocolloids,82:29-33.
[17] Momeni, M., Tabibiazar, M., Khorram, S., Zakerhamidi, M., Mohammadifar, M., Valizadeh, H. and Ghorbani, M. 2018. Pectin modification assisted by nitrogen glow discharge plasma. International journal of biological macromolecules, 120:2572-2578.
[18] Bie, P., Pu, H., Zhang, B., Su, J., Chen, L. and Li, X. 2016. Structural characteristics and rheological properties of plasma-treated starch. Innovative Food Science & Emerging Technologies, 34:196-204.
[19] Zhu, F. 2017. Plasma modification of starch. Food Chemistry, 232: 476-486.
[20] Silveira, M.R., Coutinho, N.M., Rocha, R.S., Moraes, J., Esmerino, E.A., Pimentel, T.C., Freitas, M.Q., Silva, M.C., Raices, R.S., Ranadheera, C.S. and Borges, F.O. 2019. Guava flavored whey-beverage processed by cold plasma: Physical characteristics, thermal behavior and microstructure.Food Research International,119: 564-570.
[21] Coutinho, N.M., Silveira, M.R., Pimentel, T.C., Freitas, M.Q., Moraes, J., Fernandes, L.M., Silva, M.C., Raices, R.S., Ranadheera, C.S., Borges, F.O. and Neto, R.P. 2019. Chocolate milk drink processed by cold plasma technology: Physical characteristics, thermal behavior and microstructure.LWT,102: 324-329.
[22] Thirumdas, R., Trimukhe, A., Deshmukh, R.R. and Annapure, U.S. 2017. Functional and rheological properties of cold plasma treated rice starch. Carbohydrate polymers, 157: 1723-1731.
[23] Misra, N.N., Kaur, S., Tiwari, B.K., Kaur, A., Singh, N. and Cullen, P.J. 2015. Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocolloids, 44 :115-121.
[24] Farahmandfar, R., Asnaashari, M., Salahi, M.R. and Rad, T.K. 2017. Effects of basil seed gum, Cress seed gum and Quince seed gum on the physical, textural and rheological properties of whipped cream. International journal of biological macromolecules, 98: 820-828.
[25] Wongsagonsup, R., Deeyai, P., Chaiwat, W., Horrungsiwat, S., Leejariensuk, K., Suphantharika, M., Fuongfuchat, A., & Dangtip, S. 2014. Modification of tapioca starch by non-chemical route using jet atmospheric argon plasma. Carbohydrate Polymers, 102: 790–798.
[26] Ma, X. and Pawlik, M. 2007. Intrinsic viscosities and Huggins constants of guar gum in alkali metal chloride solutions. Carbohydrate Polymers, 70(1):15-24.
[27] Mudgil, D., S. Barak and Khatkar ,B.S. 2012. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum. Int. J.Biol. Macromol,50:1035-1039.
[28] Hamdani, A.M., Wani, I.A. and Bhat, N.A. 2017. Effect of gamma irradiation on the physicochemical and structural properties of plant seed gums. International journal of biological macromolecules, 106:507-515.