اثر پلاسمای سرد بر خصوصیات ساختاری و رئولوژیکی صمغ گوار

نویسندگان
1 کارشناسی ارشد، گروه علوم و صنایع غذایی، موسسه آموزش عالی خزر، ایران
2 دانشیار، گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران
3 استاد، گروه فیزیک اتمی و مولکولی، دانشگاه مازندران، ایران
چکیده
در این پژوهش، ویژگی­های فیزیکی و شیمیایی پودر تجاری صمغ گوار پس از تیمار پلاسمای سرد فشار هوای اتمسفر در سه زمان مختلف (5، 10 و 15 دقیقه) بررسی شد. نتایج حاصل از آزمون جریان برشی پایا نشان داد که رفتار هردو نمونه شاهد و نمونه­های تیمارشده با پلاسمای سرد شل شونده با برش بود. بین مدل­های رئولوژیکی، مدل هرشل بالکلی از ضریب تبیین (R2) بالاتری برخوردار بود. مقدار nH در نمونه شاهد و تیمار کمتر از 1 بود. با افزایش زمان، مقدار KH (به جز 5 دقیقه) به طور معنی­داری کاهش یافت. در روبش کرنش، با افزایش زمان تیمار مقدار مدول­های ذخیره G و افت G با اختلاف معنی­داری کاهش یافت. نمونه تیمار شده به مدت 5 دقیقه نقطه برخورد (G = G) بزرگتری نسبت به نمونه شاهد داشت که با افزایش زمان تیمار کاهش یافت. در محدوده فرکانس پایین آزمون روبش فرکانس نمونه­های شاهد و نمونه تیمار، مدول G بالاتر از مدول G بود. از فرکانس Hz 1-1/0 مدول G و مدول G وابسته به فرکانس بودند. پس از برخورد، مدول G به مدول G غالب شد و صمغ گواررفتارژل مانند ضعیف نشان داد. مقدار tanδ در نمونه­ها کمتر از 1 و بزرگ­تر از 1/0 بود. مقدار ویسکوزیته کمپلکس (η*) با افزایش زمان تیمار با اختلاف معنی­داری کاهش یافت. شیب ویسکوزیته کمپلکس با افزایش زمان، کاهش یافت. داده­های حاصل از FTIR نشان داد که طیف جذب نمونه­های تیمار مشابه نمونه شاهد بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of cold plasma on structural and rheological properties of Guar gum

نویسندگان English

Fatemeh Fazeli 1
Reza Farahmandfar 2
Farshad Sohbatzadeh 3
1 Department of Food Science and Technology, Khazar Institute of Higher Education
2 Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University
3 Department of Atomic and Molecular Physics, University of Mazandaran
چکیده English

In this work, the physicochemical properties of commercial guar gum powder were investigated after air atmospheric pressure cold plasma treatment at three different times (5, 10 and 15 min). The results of steady shear flow test showed that behavior of both control and cold plasma treated samples was pseudoplastic. Among the rheological models, the Hershel bulkley model had higher coefficient of determination (R2). The nH in the control and treated samples was less than 1. Also, KH decreased significantly with time (except 5 minutes). In strain sweep, storage module G′ and loss module G″ decreased significantly as the time increased. The crossover point (G′=G″) of 5 minutes treated sample for 5 minutes was higher than the control samples, which decreased with increasing the treatment time. In the low frequency range of frequency sweep, G″ module of the control and treated samples was higher than G′ module. From the frequency of 0.1 to 1 Hz, the G′ and G″ modules depended on the frequency. After crossover, the G″ module prevailed over the G′ module and the guar gum showed weak gel behavior. The value of tanδ in samples was less than 1 and higher than 0.1. The complex viscosity (η*) significantly decreased, as the time of treatment increased. The slope of complex viscosity decreased with the increasing time. The FTIR data demonstrated that the absorption spectrum of the treated samples was similar to the control one.

کلیدواژه‌ها English

FTIR analysis
cold plasma
Guar Gum
Rheological properties
]1[ Li, J.-M., & Nie, S.-P. 2016. The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocolloids, 53: 46–61.
]2] Fathi, M., Mohebbi, M., and Koocheki, A. 2016. Introducing Prunus cerasus gum exudates: chemical structure, molecular weight, and rheological properties. Food Hydrocolloids, 61:946– 955.
]3[ Kapoor, M., Khandal, D., Seshadri, G. et al. 2013. Novel hydrocolloids: preparation& applications – a review. IJRRAS 16 (3): 432–482.
[4] Thombare, N., Jha, U., Mishra, S., & Siddiqui, M. Z. 2016. Guar gum as a promising starting material for diverse applications: A review. International Journal of Biological Macromolecules, 88:361–372.
[5] Mudgil, D., Barak, S., & Khatkar, B. S. 2012. Effect of enzymatic depolymerization on physicochemical and rheological properties of guar gum. Carbohydrate Polymers, 90(1):224– 228.
[6] Ma,S., Wang, Z.-h. 2013. Pulsed electric field-assisted modification of pectin from sugar beet pulp. Carbohydrate Polymers, 92(2):1700–1704.
[7] Mishra R, Bhatia S, Pal R, Visen A, Trivedi H. 2016. Cold plasma: emerging as the new standard in food safety. International Journal of Engineering Sciences, 6(2):15-20.
[8] Surowsky, B., Schlüter, O. and Knorr, D. 2015. Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: a review. Food Engineering Reviews, 7(2):82-108.
[9] Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., & Julak, J. 2015. Nonthermal plasma-A tool for decontamination and disinfection. Biotechnology Advances, 33(6 Pt 2): 1108-1119.
[10] Moreau, M., Orange, N. and Feuilloley, M. 2008. Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnology Advances,26(6):610-617.
[11] Conrads, H. and Schmidt, M. 2000. Plasma generation and plasma sources. Plasma Sources Science and Technology. 9:441.
[12] Fridman, A., Chirokov, A., & Gutsol, A. 2005. Non-thermal atmospheric pressure discharges. Journal of Physics D: Applied Physics, 38(2): R1–R24.
[13] Coutinho, N.M., Silveira, M.R., Rocha, R.S., Moraes, J., Ferreira, M.V.S., Pimentel, T.C., et al. 2018. Cold plasma processing of milk and dairy products. Trends in Food Science & Technology,74:56-68.
[14] Hertwig, C., Meneses, N., Mathys, A. 2018. Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: a review. Trends in Food Science & Technology,77:131-142.
[15] Naji,S., Razavi,S.M.A. 2014. Functional and textural characteristics of cress seed (Lepidiu sativum) gum and xanthan gum: Effect of refrigeration condition. Food Bioscience,5:1-8.
[16] Misra, N.N., Yong, H.I., Phalak, R. and Jo, C. 2018. Atmospheric pressure cold plasma improves viscosifying and emulsion stabilizing properties of xanthan gum.Food Hydrocolloids,82:29-33.
[17] Momeni, M., Tabibiazar, M., Khorram, S., Zakerhamidi, M., Mohammadifar, M., Valizadeh, H. and Ghorbani, M. 2018. Pectin modification assisted by nitrogen glow discharge plasma. International journal of biological macromolecules, 120:2572-2578.
[18] Bie, P., Pu, H., Zhang, B., Su, J., Chen, L. and Li, X. 2016. Structural characteristics and rheological properties of plasma-treated starch. Innovative Food Science & Emerging Technologies, 34:196-204.
[19] Zhu, F. 2017. Plasma modification of starch. Food Chemistry, 232: 476-486.
[20] Silveira, M.R., Coutinho, N.M., Rocha, R.S., Moraes, J., Esmerino, E.A., Pimentel, T.C., Freitas, M.Q., Silva, M.C., Raices, R.S., Ranadheera, C.S. and Borges, F.O. 2019. Guava flavored whey-beverage processed by cold plasma: Physical characteristics, thermal behavior and microstructure.Food Research International,119: 564-570.
[21] Coutinho, N.M., Silveira, M.R., Pimentel, T.C., Freitas, M.Q., Moraes, J., Fernandes, L.M., Silva, M.C., Raices, R.S., Ranadheera, C.S., Borges, F.O. and Neto, R.P. 2019. Chocolate milk drink processed by cold plasma technology: Physical characteristics, thermal behavior and microstructure.LWT,102: 324-329.
[22] Thirumdas, R., Trimukhe, A., Deshmukh, R.R. and Annapure, U.S. 2017. Functional and rheological properties of cold plasma treated rice starch. Carbohydrate polymers, 157: 1723-1731.
[23] Misra, N.N., Kaur, S., Tiwari, B.K., Kaur, A., Singh, N. and Cullen, P.J. 2015. Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocolloids, 44 :115-121.
[24] Farahmandfar, R., Asnaashari, M., Salahi, M.R. and Rad, T.K. 2017. Effects of basil seed gum, Cress seed gum and Quince seed gum on the physical, textural and rheological properties of whipped cream. International journal of biological macromolecules, 98: 820-828.
[25] Wongsagonsup, R., Deeyai, P., Chaiwat, W., Horrungsiwat, S., Leejariensuk, K., Suphantharika, M., Fuongfuchat, A., & Dangtip, S. 2014. Modification of tapioca starch by non-chemical route using jet atmospheric argon plasma. Carbohydrate Polymers, 102: 790–798.
[26] Ma, X. and Pawlik, M. 2007. Intrinsic viscosities and Huggins constants of guar gum in alkali metal chloride solutions. Carbohydrate Polymers, 70(1):15-24.
[27] Mudgil, D., S. Barak and Khatkar ,B.S. 2012. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum. Int. J.Biol. Macromol,50:1035-1039.
[28] Hamdani, A.M., Wani, I.A. and Bhat, N.A. 2017. Effect of gamma irradiation on the physicochemical and structural properties of plant seed gums. International journal of biological macromolecules, 106:507-515.