کاربرد صمغ زانتان، کربوکسی متیل سلولز و کنسانتره پروتئین آب پنیر در فرمولاسیون و بهبود خواص خامه قنادی کم‌چرب

نویسندگان
1 دانشگاه آزاد اسلامی واحد شهرضا
2 دانشگاه ازاد اسلامی واحد شهرضا
چکیده
خامه قنادی یکی از محصولات لبنی پر­ مصرف با ساختار پیچیده امولسیونی کف مانند است. با توجه به بالا بودن میزان چربی در آن و عوارض چربی بر سلامت عمومی تولید خامه قنادی کم‌چرب توصیه می شود. بر این اساس اثر کنسانتره آب پنیر، کربوکسی متیل سلولز و صمغ زانتان و ترکیب آنها بر ویژگی های خامه قنادی کم چرب بررسی شد. برای این منظور ابتدا مقادیر مختلف این جانشین های چربی بوسیله طرح سطح پاسخ تعیین و سپس به خامه با چربی 20 درصد اضافه گردید. بر روی این نمونه‌‌ها، آزمون‌های ویسکوزیته ظاهری، سفتی بافت خامه­ قنادی، توزیع اندازه ذرات، پایداری کف، اورران، ارزیابی ویژگی­‌های حسی، ویژگی‌های رنگ(L *, a *, b *) صورت گرفت. نتایج نشان داد که افزودن جانشین های چربی در خامه کم چرب در مقایسه با نمونه شاهد موجب افزایش ویسکوزیته ظاهری، افزایش اورران، افزایش سفتی بافت، پایداری کف و تغییر اندازه ذرات شده است(p<0/05) ولی از نظر آماری پایدار کننده­ها به تنهایی تأثیر معنی داری بر فاکتورها ی رنگ نداشتند. البته کنسانتره پروتئین آب پنیر در مقایسه با سایر تیمارها به صورت معنی داری دارای بیشترین اوران و کمترین اندازه ذرات، صمغ زانتان دارای کمترین میزان آب پس دهی و کربوهیدرات ها به ویژه زانتان بالاترین ویسکوزیته و سفتی را داشتند(p<0/05). بر اساس داده های ارزیابی حسی، نمونه بهینه حاوی 35/0 پروتئین آب پنیر و 15/0 زانتان و کربوکسی متیل سلولز، بصورت معنی دار مطلوبیت بیشتری از نظر بافت و پذیرش کلی نسبت به نمونه شاهد و بقیه تیمارها داشت. در نهایت می توان بیان نمود که این مواد افزودنی می­توانند جانشین های مناسبی برای کاهش درصد چربی خامه قنادی باشند، با توجه به اینکه آنها سبب بهبود خصوصیات فیزیکی، رئولوژیکی و حسی خامه قنادی کم چرب بدون تأثیر معنی­داری بر روی اغلب شاخص­های ظاهری مثل رنگ و ویژگی های حسی می شوند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Application of the xanthan gum, carboxymethyl cellulose and whey protein concentrate in the formulation and improvement of low fat whipped cream properties

نویسندگان English

leila lakzadeh 1
sajad nasr esfahani 2
1 Islamic Azad University, Shahreza brancg
2 Islamic Azad University , Shahreza branch
چکیده English



Whipped cream is one of the most popular dairy products with a complex structure of foam emulsion. Production of low fat whipped cream with fat substitutes is recommended with regard to the high fat content in whipped cream and side effects of fat on the public health. Based on, the effects of whey protein concentrate, carboxymethyl cellulose, xanthan gum and mix of them were investigated on the properties of low fat whipped cream. For this purpose, different amounts of them were determined by the surface response design and then they were added to the cream with 20% fat. Then, apparent viscosity, cream firmness, particle size distribution, foam stability, overrun tests, sensory evaluation, color characteristics (L *, a *, b *) were done on the samples. The results showed that fat substitutes in low fat whipped cream compared to the control sample were increased the apparent viscosity, overrun, firmness, foam stability and change in particle size (p<0/05). However, the stabilizers had no alone statistically effects on the color factors. Also, whey protein concentrate in compared with other treatments had the highest overrun and lowest particle size, xanthan gum had the lowest water leakage and carbohydrates, especially xanthan, had the highest viscosity and firmness (p<0/05). Based on the sensory evaluation data, optimal sample that contain 0.35 whey protein concentrate and 0.15 xanthan and carboxymethyl cellulose had statistically more desirable than control and other treatments in texture and overall acceptance. At the end, we pointed out that these additives could be a good alternative to reduce the percentage of fat in whipped cream due to they improve the physical, rheological and sensory properties of whipped cream without significant effects on the most of external parameters such as color and sensory.

کلیدواژه‌ها English

whipped Cream
fat substitutes
whey protein concentrate
Carboxymethyl cellulose
xanthan gum
overrun
[1] Akbari, M., Eskandari, M.H., Davoudi, Z., 2019, Application and functions of fat replacers in low-fat ice cream: A review, Trends in Food Science & Technology, 86: 34-40.
[2] Hajes, V., Thi ebaut, A. C. M., Rotival, M., Gauthier, E., Maillard, V., Boutron- Ruault, M. C., 2008, Association between serum trans-monounsaturated fatty acids and breast cancer risk in the E3N-EPIC study, American Journal of Epidemiology, 167(11): 1312-1320.
[3] Ihara, K., Habara, K., Ozaki, Y., Nakamura, K., Ochi, H., Saito, H, Iwatsuki, K., 2010, Influence of whipping temperature on the whipping properties and rheological characteristics of whipped cream, Journal of Dairy Science, 93: 2887-2895.‌
[4] Padiernos, C.A., Lim, S.Y., Swanson, B.G., Ross, C.F., Clark, S., 2009, High hydrostatic pressure modification of whey protein concentrate for use in low-fat whipping cream improves foaming properties, Journal of Dairy Science, 92: 3049-3056.‌
[5] Farahnaky, A., Safari, Z., Ahmadi Gorji, F., Mesbahi, G.R., 2011, Use of gelatin as a fat replacer for low fat cream production, Iranian journal of food science and technology, 8, 31: 45-52.
[6] Emam‐djome, Z., Mousavi, M. E., Ghorbani, A.V., Madadlou, A., 2008, Effect of whey protein concentrate addition on the physical properties of homogenized sweetened dairy creams, International Journal of Dairy Technology, 61: 183-191.‌
[7] Ghorbani, A., Saraei, H., Rafe, A., Shahidi, S.A., Atashzar, A., 2019, Microstructure and chemorheological behavior of whipped cream as affected by rice bran protein addition, Food Science and Nutrition, 7:1–7.
[8] Phuong, T., Nguyen, M., Kravchuk, O., Bhandari, B., Prakas, S., 2016, Effect of different hydrocolloids on texture, rheology, tribology and sensory perception of texture and mouthfeel of low-fat pot-set yoghurt, Food Hydrocolloids, 52, 11-18.
[9] Sullivan, M.G.O., 2016, Low-fat Foods: Types and Manufacture, Encyclopedia of Food and Health, 571-575.
[10] Li, C. P., Enomoto, H., Ohki, S., Ohtomo, H., Aoki, T., 2005, Improvement of functional properties of whey protein isolate through glycation and phosphorylation by dry heating, Journal of Dairy Science, 88:4137–4145.
[11] Sajedi, M., Nasirpour, A., Keramat, J., Desobry, S., 2014, Effect of modified whey protein concentrate on physical properties and stability of whipped cream, Journal of Food Hydrocolloids, 36: 93-101.
[12] Foegeding, E. A., Luck, P. J., Davis, J. P., 2006, Factors determining the physical properties of protein foams, Food Hydrocoll, 20:284– 292.
[13] Habibi, H., Khosravi-Darani K., 2017, Effective variables on production and structure of xanthan gum and its food applications: A review, Biocatalysts and Agricultural Biotechnology,10: 130-140.
[14] Mohsin, A., Ni, H., Luo, Y., Wei, Y., Tian, X., Guan W., Imran., M.A. Khan, M., Niazi, S., Rehman, M.S., Zhuang, Y., Guo, M., 2019, Qualitative improvement of camel milk date yoghurt by addition of biosynthesized xanthan from orange waste, LWT, 108: 61-68.
[15] Guarda, A., Rosell, C.M., Benedito, C., Galotto, M.J., 2004. Different hydrocolloids as bread improvers and antistaling agents, Journal of Food Hydrocolloids, 18: 241-247.
[16] Bak, J.H., Yoo, B., 2017, Effect of CMC addition on steady and dynamic shear rheological properties of binary systems of xanthan gum and guar gum, Food Hydrocolloids, 72: 90-104.
[17] Benichou, A., Aserin, A., Garti, N., 2002, Protein polysaccharide interactions for stabilization of food emulsions, Journal of Dispersion Science and Technology, 23: 93-123.
[18] Dickinson, E., 2008, Interfacial structure and stability of food emulsions as affected by protein–polysaccharide interactions, Journal of Soft Matter, 4: 932-942.
[19] Rodriguez Patino, J.M., Pilosof, A.M., 2011, Protein polysaccharide interactions at fluid interfaces, Journal of Food Hydrocolloids, 25: 1925-1937.
[20] Farahmandfar, R., Asnaashari, M., Taheri, A., Khosravi Rad, T., 2019, Flow behavior, viscoelastic, textural and foaming characterization of whipped cream: Influence of Lallemantia royleana seed, Salvia macrosiphon seed and carrageenan gums, International Journal of Biological Macromolecules, 121: 609–615.
[21] Parvaneh, V., 2012, Quality Control and Chemical Testing of Food. Tehran: Tehran University Press, 250 p.
[22] Allen, K.E., Dickinson, E., Murray, B., 2006, Acidified sodium caseinate emulsion foams containing liquid fat: A comparison with whipped cream, Journal of LWT-Food Science and Technology, 43: 225-234.
[23] Omidbakhsh, E., Nayebzade, K., Mohammadifar, M.A., Amiri, Z., 2013, Effects of combined modified starch and xanthan gum on the stability and rheological and sensory characteristics of tomato sauce, Iranian Journal of Nutrition Sciences and Food Technology, 8: 145-158.
[24] Piazza, L., Gigli, J., Rojas, C., Ballabio, D., Todeschini, R., Tripaldi, P., 2009, Dairy cream response in instrumental texture evaluation processed by multivariate analysis, Journal of Chemometrics and Intelligent Laboratory Systems, 96: 258-263.‌
[25] Moelants, K.R., Cardinaels, R., Jolie, R.P., Verrijssen, T.A., Van Buggenhout, S., Zumalacarregui, L.M., Hendrickx, M.E., 2013, Relation between particle properties and rheological characteristics of carrot-derived suspensions, Journal of Food and Bioprocess Technology, 6: 1127-1143.‌
[26] Amiri, A., Ganjeh, A.M., Torbati, S., Ghaffarinejhad, G., Esmaeilzadeh Kenari, R., 2018, Impact of high-intensity ultrasound duration and intensity on the structural properties of whipped cream, International Dairy Journal, 78:152-158.
[27] Fangshuai, P., Shenghua, H., Huaxi, Y., Qi, Li., Weili, X., Rongchun, W., Ying, M., 2018, Physical, textural and rheological properties of whipped cream affected by milk fat globule membrane protein, International Journal of Food Properties, 21: 1094-2912.
[28] Naghizadeh Raisi, Sh., Shahidi Yasaqi, A., Esfandiari, Z., Ghorbani Hassan Sarai, A., 2009, Influence of Stabilizers and Fat Content on the mixing and physical Properties of whipping cream, Journal of Food Processing and Preservation, 1: 85-73.
[29] Zhao, Q., Zhao, M., Li, J., Yang, B., Su, G., Cui, C., Jiang, Y., 2009a, Effect of hydroxyl propyl methylcellulose on the textural and whipping properties of whipped cream, Journal of Food Hydrocolloids, 23: 2168-2173.
[30] Lorenzen, P.C., Precht, D., Malmgren, B., 1993, Influence of the type of UHT-heating and the kind of additives on functional properties of whipping cream, Journal of Chemie, Mikrobiologie, Technologie der Lebensmittel, 15: 101-106.
[31] Zhao, Q., Zhao, M., Yang, B., Cui, C., 2009b, Effect of xanthan gum on the physical properties and textural characteristics of whipped cream, Journal of Food Chemistry, 116: 624-628.
[32] Zhao, Q., Zhao, M., Wang, J., Wang, C., Yang, B., 2008, Effects of sodium caseinate and whey proteins on whipping properties and texture characteristics of whipped cream, Journal of Food Process Engineering, 31: 671-683.
[33] Fox, P.F., Mcsweeney, P. L., 1998, Dairy Chemistry and Biochemistry. USA: Springer, 463.
Gholamhosseinpour, A., Mazaheri Tehrani, M., 2011, The Use of Milk Protein Concentrate (MPC-85) in the Production of Low-Fat Cream and Study Its Physicochemical and Sensory Properties, Iranian Food Science and Technology, 7, 2: 172-178.
[34] Smith, A.K., Kakuda, Y., Goff, H.D., 2000, Changes in protein and fat structure in whipped cream caused by heat treatment and addition of stabilizer to the cream, Journal of Food Research International, 33: 697-706.
[35] Mobaserfar, R., 2013, Investigation of the effect of different hydrocolloids on the stabilization of sterile cream, 21st National Congress of Food Science and Technology, Shiraz University, 7-9 November.
[36] Gholamhosseinpour, A., Mazaheri Tehrani, M., 2011, The use of milk protein concentrate (MPC-85) in the Production of Low-Fat Cream and Study of the physicochemical and sensory Properties of it, Iranian Food Science and Technology Research Journal, 7, 2: 172-178.
[37] Mcclements, D.J. 2007. Critical review of techniques and methodologies for characterization of emulsion stability. Journal of Critical Reviews in Food Science and Nutrition, 47: 611-649.