[1] Jafari, H., Pirouzifard, M., Khaledabad, MA., Almasi, H. (2016). Effect of chitin nanofiber on the morphological and physical properties of chitosan/silver nanoparticle bionanocomposite films. International Journal of Biological Macromolecules, 92, 461-466.
[2] Ramos, Ó., Santos, A., Leão, M., Pereira, J., Baptista da Silva, S., Fernandes, J., Franco, M., Pintado, M., & Malcata, F. (2012). Antimicrobial activity of edible coatings prepared from whey protein isolate and formulated with various antimicrobial agents. International Dairy Journal, 25(2), 132-141.
[3] Jahed, E., Khaledabad, M. A., Almasi, H., Hasanzadeh, R. (2017). Physicochemical properties of Carum copticum essential oil loaded chitosan films containing organic nanoreinforcements. Carbohydrate Polymers, 164, 325-338.
[4] Jahed, E., Khaledabad, M. A., Bari, M., Almasi, H. (2017). Effect of cellulose and lignocellulose nanofibers on the properties of Origanum vulgare ssp. gracile essential oil-loaded chitosan films. Reactive and Functional Polymers, 117, 70-80.
[5] Pandey S, P.M., Mishra A, Jha B. (2015). Physio-Biochemical Composition andUntargeted Metabolomics of Cumin (Cuminum cyminumL.) Make It PromisingFunctional Food and Help in MitigatingSalinity Stress. PLOS ONE, 10(12).
[6] Saee, Y., Dadashi, M., Eslami, G., Goudarzi, H., Taheri, S., Fallah, F. (2016). Evaluation of Antimicrobial Activity of Cuminum Cyminum Essential Oil and Extract against Bacterial Strains Isolated from Patients with Symptomatic Urinary Tract Infection. Novelty in Biomedicine, 4(4), 147-152.
[7] Hassanien, M.F.R., Mahgoub, S.A., El-Zahar, K.M. (2014). Soft cheese supplemented with black cumin oil: Impact on food borne pathogens and quality during storage. Saudi Journal of Biological Sciences, 21(3), 280-288.
[8] Ghanbarzadeh, B., Oleyaei, S.A., Almasi, H. (2015) Nanostructured Materials Utilized in Biopolymer-based Plastics for Food Packaging Applications. Critical Reviews in Food Science and Nutrition, 55(12), 1699-1723.
[9] Tongfei, W., Farnood, R., O’Kelly, K., Chen, B. (2014). Mechanical behavior of transparent nanofibrillar cellulose–chitosan nanocomposite films in dry and wet conditions. Journal of the Mechanical Behavior of Biomedical Materials, 32, 279-286.
[10] Krishnan, S. K., Prokhorov, E., Iturriaga, M. H., Morales, M., Vázquez-Lepe, M., Kovalenko, Y., Sanchez, I., Luna-Bárcenas, G. (2015). Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions. European Polymer Journal, 67, 242-251.
[11] Youssef, A.M., Abou-Yousef, H., El-Sayed, S. M., Kamel, S. (2015). Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. International Journal of Biological Macromolecules, 76, 25-32.
[12] Azeez, A.A., Rhee, K.Y., Park, S.J., Kim, H.J., Jung, D.H. (2013). Application of cryomilling to enhance material properties of carbon nanotube reinforced chitosan nanocomposites. Composites Part B: Engineering, 50, 127-134.
[13] Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: Review. LWT - Food Science and Technology, 43(6), 837-842.
[14] Ferreira, C., Nunes, C., Delgadillo, I., Lopes-da-Silva, J.A. (2009). Characterization of chitosan–whey protein films at acid pH. Food Research International, 42(7), 807-813.
[15] Pereda, M., Aranguren, M., Marcovich, N. (2008). Characterization of chitosan/caseinate films. Journal Of Applied Polymer Science, 107(2), 1080-1090.
[16] Sharafati Chaleshtori, F., Taghizade, M., Rafieian-Kopaei, M., Sharafati-Chaleshtori, R. (2016). Effect of chitosan incorporated with cumin and eucalyptus essential oils as antimicrobial agents on fresh chicken meat. Journal of Food Processing And Preservation, 40, 396-404.
[17] Xu, Y.X., Kim, K.M., Hanna, M.A., Nag, D. (2005). Chitosan–starch composite film: preparation and characterization. Industrial Crops and Products, 21(2), 185-192.
[18] Arrieta, M.P., Peltzer, M., López, J., CarmenGarrigós, M., Valente, A., Jiménez, A. (2014). Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering, 121, 94-101.
[19] Rao, M.S., Kanatt, S.R., Chawla, S.P., Sharma, A. (2010). Chitosan and guar gum composite films: Preparation, physical, mechanical and antimicrobial properties. Carbohydrate Polymers, 82(4), 1243-1247.
[20] ASTM, Standard test method for tensile properties of thin plastic sheeting, in method D 882-95. 1995, American Society for Testing and Materials: Philadelphia.
[21] Karbowiak, T., Debeaufort, F., Champion, D., Voilley, A. (2006). Wetting properties at the surface of iota-carrageenan-based edible films. Journal of Colloid and Interface Science, 294(2), 400-410.
[22] ASTM E96 / E96M-16, Standard Test Methods for Water Vapor Transmission of Materials, ASTM International, West Conshohocken, PA, 2016, www.astm.org.
[23] ISO 15105-1:2007 Plastics — Film and sheeting — Determination of gas-transmission rate — Part 1: Differential-pressure methods.
[24] Kokoszka, S., Debeaufortbc, F., jLenart, A., Voilley, A. (2010). Water vapour permeability, thermal and wetting properties of whey protein isolate based edible films. International Dairy Journal, 20(1), 53-60.
[25] Anker, M., Stading, M., Hermansson, A.N. (2000). Relationship between the microstructure and the mechanical and barrier properties of whey protein films. Journal of Agricultural and Food Chemistry, 48(9), 3806-3816.
[26] Pe´rez-Gago, M.B., Krochta, J. M. (1999). Water vapor permeability of whey protein emulsion films as affected by pH. Journal of Food Science, 64(4), 695-698.
[27] Kurek, M., Galus, S., Debeaufort, F. (2014). Surface, mechanical and barrier properties of bio-based composite films based on chitosan and whey protein. Food Packaging and Shelf Life, 1(1), 56-67.
[28] Rivero, S., García, M.A., Pinotti, A. (2009). Composite and bi-layer films based on gelatin and chitosan. Journal of Food Engineering, 90, 531-539.
[29] Cheng, M., et al., Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials, 2003. 24(17): p. 2871-80.
[30] Silva, S.S., Goodfellow, B.J., Benesch, J., Rocha, J., Mano, J.F., Reis, R.L. (2007). Morphology and miscibility of chitosan/soy protein blended membranes. Carbohydrate Polymers, 70(1), 25-31.
[31] Białopiotrowicz, T., Jańczuk, B. (2002). Surface Properties of Gelatin Films. Langmuir, 18(24), 9462-9468.
[32] Osés, J., Fabregat-Vázquez, M., Pedroza-Islas, R., Tomás, S., Cruz-Orea, A., Maté, J.I. (2009). Development and characterization of composite edible films based on whey protein isolate and mesquite gum. Journal of Food Engineering, 92(1), 56-62.
[33] Kurek, M., Brachais, C.H., Nguimjeu, C.M., Bonnotte, A., Voilley, A., Galić, K., Couvercelle, J.P., Debeaufort, F. (2012). Structure and thermal properties of a chitosan coated polyethylene bilayer film. Polymer Degradation and Stability, 97(8), 1232-1240.
[34] Krkić, N., Lazić, V., Petrović, L., Gvozdenović, J., Pejić Krkić, D. (2012). The Properties of Chitosan-Laminated Collagen Film. Food Technology and Biotechnology, 50(4).
[35] Aziz, S. and H. Almasi. (2018). Physical Characteristics, Release Properties, and Antioxidant and Antimicrobial Activities of Whey Protein Isolate Films Incorporated with Thyme (Thymus vulgaris L.) Extract-Loaded Nanoliposomes. Food and Bioprocess Technology, 11(9).
[36] Ramos, Ó.L., Rainas, I., Silva, S., Fernandes, J.C., Cerqueira, M., Pereira, R.N., Vicentec, A., Fátima, M., Pintado, M.E., Xavier Malcata, F. (2013). Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocolloids, 30(1), 110-122.
[37] Hosseinnia, M., M.A. Khaledabad, and H. Almasi. (2017). Optimization of Ziziphora clinopodiodes essential oil microencapsulation by whey protein isolate and pectin: A comparative study. International Journal of Biological Macromolecules, 101, 958-966.