بررسی تأثیر روش تولید فیلم (کامپوزیت یا دولایه) و نسبت بیوپلیمرها بر خصوصیات فیزیکوشیمیایی فیلم‌ فعال کیتوزان - ایزوله پروتئین آب پنیر به روش سطح پاسخ

نویسندگان
گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه
چکیده
هدف از این تحقیق بررسی امکان تهیه فیلم­های کامپوزیت و دولایه کیتوزان و ایزوله پروتئین آب پنیر حاوی اسانس زیره و نانوفیبر کیتوزان بود و بررسی خواص آن بود. امکان تولید فیلم کامپوزیت با کاهش pH ایزوله پروتئین به پایین­تر از pH ایزوالکتریک فراهم شد. فیلم دولایه نیز با ریختن محلول WPI روی فیلم خشک شده‌ی کیتوزان حاصل شد. مقادیر ترکیب فعال و نانوپرکننده ثابت بود (mg/100ml 125) و تأثیر نسبت کیتوزان به WPI و نوع فیلم (لامینه یا کامپوزیت) با استفاده از روش سطح پاسخ بر روی خواص فیلم بررسی شد. پارامترهای مربوط به رنگ، زاویه تماس آب، جذب رطوبت، حلالیت، نفوذپذیری به بخار آب و خواص مکانیکی فیلم­ها بررسی شد. با استفاده از تابع مطلوبیت و بر اساس نتایج بدست آمده، فرمولاسیون بهینه فیلم­های کامپوزیت (14/65 درصد WPI و 85/34 درصد کیتوزان) و دو لایه (01/49 درصد WPI و 99/50 درصد کیتوزان) بدست آمد. آنالیز ریزساختار فیلم­های بهینه با استفاده از FTIR، FE-SEM و XRD انجام شد. نتایج FE-SEM نشان داد در فیلم کامپوزیت با وجود ساختار ناهمگن، ناسازگاری بین دو پلیمر ایجاد نشد و همچنین در فیلم دو لایه اتصال خوبی بین دو لایه بوجود آمد. نتایج XRD نشان داد فیلم کامپوزیت ساختار نیمه کریستالی دارد و اختلاف معنی­داری بین شدت پیک‌ها و خواص کریستالی فیلم کامپوزیت و دو لایه وجود ندارد. در نتایج FTIR اختلاف کمی بین طیف دو نوع فیلم مشاهده شد. نتایج بررسی فیلم­های بهینه نشان داد، خصوصیات فیلم کامپوزیت در مقایسه با فیلم دو لایه مطابقت بیشتری با مدل پیش بینی شده دارد. اما فیلم لامینه از خصوصیات مورفولوژیکی بهتر و پتانسیل کاربرد بیشتر در بسته بندی یا مواد غذایی برخوردار بود و برای نگهداری محصولات غذایی مختلف قابل پیشنهاد است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the effect of film preparation method (composite or laminated) and biopolymers’ proportion on the physicochemical properties of active chitosan-whey protein isolate film by response surface method (RSM)

نویسندگان English

Khorshid Hosseinzadeh
Asghar Khosrowshahi Asl
Mohammad Alizadeh Khaledabad
Hadi Almasi
Department of Food Science, Faculty of agriculture, Urmia university
چکیده English

The aim of this research was to investigate the feasibility of composite and laminated chitosan (CH) and whey protein isolate (WPI) film preparation which was containing cumin essential oil and chitosan nanofiber. Production of composite film was possible by decreasing WPI pH to below its isoelectric pH. Double-layer was also prepared by pouring WPI solution on dried CH film. amount of active agent and nanofiller was fixed (125 mg/100ml) and only the effect of CH/WPI ration and film type (laminated or composite) on the properties of films was arudied by RSM analytical method. The color, watercontact angle, moisture absorption, solubility, water vapor permeability and mechanical properties of films were determined. By using desirability function and according to the results, optimum formulation of composite film (65.14% WPI and 34.85% CH) and laminated film (49.01% WPI and 50.99% CH) was achieved. Microstructure of optimized films was analyzed by FTIR, FE-SEM and XRD tests. Results of FE-SEM indicated a heterogenous stracture in composite film but without any phase separation. Also, at the laminatred film good attachment between two layers of CH and WPI was observed. Semi-crystalline stracture of composite film was approved by XRD analysis and there was no detectable difference between peak intensity and crystalline stracture of composite and laminated film. there was a slight difference in the FTIR spectra of composite and laminated films. According to the results, the characteristics of composite film in comparison to laminated film had better accordance with the used prediction model. But the laminated film exhibited better morphological characteristics and could be suggested for preservation of different foods due to its high potential for use in food packaging.

کلیدواژه‌ها English

Biodegradable film
Composite
Lamination
Microstracture
Mechanical properties
Optimization
[1] Jafari, H., Pirouzifard, M., Khaledabad, MA., Almasi, H. (2016). Effect of chitin nanofiber on the morphological and physical properties of chitosan/silver nanoparticle bionanocomposite films. International Journal of Biological Macromolecules, 92, 461-466.
[2] Ramos, Ó., Santos, A., Leão, M., Pereira, J., Baptista da Silva, S., Fernandes, J., Franco, M., Pintado, M., & Malcata, F. (2012). Antimicrobial activity of edible coatings prepared from whey protein isolate and formulated with various antimicrobial agents. International Dairy Journal, 25(2), 132-141.
[3] Jahed, E., Khaledabad, M. A., Almasi, H., Hasanzadeh, R. (2017). Physicochemical properties of Carum copticum essential oil loaded chitosan films containing organic nanoreinforcements. Carbohydrate Polymers, 164, 325-338.
[4] Jahed, E., Khaledabad, M. A., Bari, M., Almasi, H. (2017). Effect of cellulose and lignocellulose nanofibers on the properties of Origanum vulgare ssp. gracile essential oil-loaded chitosan films. Reactive and Functional Polymers, 117, 70-80.
[5] Pandey S, P.M., Mishra A, Jha B. (2015). Physio-Biochemical Composition andUntargeted Metabolomics of Cumin (Cuminum cyminumL.) Make It PromisingFunctional Food and Help in MitigatingSalinity Stress. PLOS ONE, 10(12).
[6] Saee, Y., Dadashi, M., Eslami, G., Goudarzi, H., Taheri, S., Fallah, F. (2016). Evaluation of Antimicrobial Activity of Cuminum Cyminum Essential Oil and Extract against Bacterial Strains Isolated from Patients with Symptomatic Urinary Tract Infection. Novelty in Biomedicine, 4(4), 147-152.
[7] Hassanien, M.F.R., Mahgoub, S.A., El-Zahar, K.M. (2014). Soft cheese supplemented with black cumin oil: Impact on food borne pathogens and quality during storage. Saudi Journal of Biological Sciences, 21(3), 280-288.
[8] Ghanbarzadeh, B., Oleyaei, S.A., Almasi, H. (2015) Nanostructured Materials Utilized in Biopolymer-based Plastics for Food Packaging Applications. Critical Reviews in Food Science and Nutrition, 55(12), 1699-1723.
[9] Tongfei, W., Farnood, R., O’Kelly, K., Chen, B. (2014). Mechanical behavior of transparent nanofibrillar cellulose–chitosan nanocomposite films in dry and wet conditions. Journal of the Mechanical Behavior of Biomedical Materials, 32, 279-286.
[10] Krishnan, S. K., Prokhorov, E., Iturriaga, M. H., Morales, M., Vázquez-Lepe, M., Kovalenko, Y., Sanchez, I., Luna-Bárcenas, G. (2015). Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions. European Polymer Journal, 67, 242-251.
[11] Youssef, A.M., Abou-Yousef, H., El-Sayed, S. M., Kamel, S. (2015). Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. International Journal of Biological Macromolecules, 76, 25-32.
[12] Azeez, A.A., Rhee, K.Y., Park, S.J., Kim, H.J., Jung, D.H. (2013). Application of cryomilling to enhance material properties of carbon nanotube reinforced chitosan nanocomposites. Composites Part B: Engineering, 50, 127-134.
[13] Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: Review. LWT - Food Science and Technology, 43(6), 837-842.
[14] Ferreira, C., Nunes, C., Delgadillo, I., Lopes-da-Silva, J.A. (2009). Characterization of chitosan–whey protein films at acid pH. Food Research International, 42(7), 807-813.
[15] Pereda, M., Aranguren, M., Marcovich, N. (2008). Characterization of chitosan/caseinate films. Journal Of Applied Polymer Science, 107(2), 1080-1090.
[16] Sharafati Chaleshtori, F., Taghizade, M., Rafieian-Kopaei, M., Sharafati-Chaleshtori, R. (2016). Effect of chitosan incorporated with cumin and eucalyptus essential oils as antimicrobial agents on fresh chicken meat. Journal of Food Processing And Preservation, 40, 396-404.
[17] Xu, Y.X., Kim, K.M., Hanna, M.A., Nag, D. (2005). Chitosan–starch composite film: preparation and characterization. Industrial Crops and Products, 21(2), 185-192.
[18] Arrieta, M.P., Peltzer, M., López, J., CarmenGarrigós, M., Valente, A., Jiménez, A. (2014). Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering, 121, 94-101.
[19] Rao, M.S., Kanatt, S.R., Chawla, S.P., Sharma, A. (2010). Chitosan and guar gum composite films: Preparation, physical, mechanical and antimicrobial properties. Carbohydrate Polymers, 82(4), 1243-1247.
[20] ASTM, Standard test method for tensile properties of thin plastic sheeting, in method D 882-95. 1995, American Society for Testing and Materials: Philadelphia.
[21] Karbowiak, T., Debeaufort, F., Champion, D., Voilley, A. (2006). Wetting properties at the surface of iota-carrageenan-based edible films. Journal of Colloid and Interface Science, 294(2), 400-410.
[22] ASTM E96 / E96M-16, Standard Test Methods for Water Vapor Transmission of Materials, ASTM International, West Conshohocken, PA, 2016, www.astm.org.
[23] ISO 15105-1:2007 Plastics — Film and sheeting — Determination of gas-transmission rate — Part 1: Differential-pressure methods.
[24] Kokoszka, S., Debeaufortbc, F., jLenart, A., Voilley, A. (2010). Water vapour permeability, thermal and wetting properties of whey protein isolate based edible films. International Dairy Journal, 20(1), 53-60.
[25] Anker, M., Stading, M., Hermansson, A.N. (2000). Relationship between the microstructure and the mechanical and barrier properties of whey protein films. Journal of Agricultural and Food Chemistry, 48(9), 3806-3816.
[26] Pe´rez-Gago, M.B., Krochta, J. M. (1999). Water vapor permeability of whey protein emulsion films as affected by pH. Journal of Food Science, 64(4), 695-698.
[27] Kurek, M., Galus, S., Debeaufort, F. (2014). Surface, mechanical and barrier properties of bio-based composite films based on chitosan and whey protein. Food Packaging and Shelf Life, 1(1), 56-67.
[28] Rivero, S., García, M.A., Pinotti, A. (2009). Composite and bi-layer films based on gelatin and chitosan. Journal of Food Engineering, 90, 531-539.
[29] Cheng, M., et al., Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials, 2003. 24(17): p. 2871-80.
[30] Silva, S.S., Goodfellow, B.J., Benesch, J., Rocha, J., Mano, J.F., Reis, R.L. (2007). Morphology and miscibility of chitosan/soy protein blended membranes. Carbohydrate Polymers, 70(1), 25-31.
[31] Białopiotrowicz, T., Jańczuk, B. (2002). Surface Properties of Gelatin Films. Langmuir, 18(24), 9462-9468.
[32] Osés, J., Fabregat-Vázquez, M., Pedroza-Islas, R., Tomás, S., Cruz-Orea, A., Maté, J.I. (2009). Development and characterization of composite edible films based on whey protein isolate and mesquite gum. Journal of Food Engineering, 92(1), 56-62.
[33] Kurek, M., Brachais, C.H., Nguimjeu, C.M., Bonnotte, A., Voilley, A., Galić, K., Couvercelle, J.P., Debeaufort, F. (2012). Structure and thermal properties of a chitosan coated polyethylene bilayer film. Polymer Degradation and Stability, 97(8), 1232-1240.
[34] Krkić, N., Lazić, V., Petrović, L., Gvozdenović, J., Pejić Krkić, D. (2012). The Properties of Chitosan-Laminated Collagen Film. Food Technology and Biotechnology, 50(4).
[35] Aziz, S. and H. Almasi. (2018). Physical Characteristics, Release Properties, and Antioxidant and Antimicrobial Activities of Whey Protein Isolate Films Incorporated with Thyme (Thymus vulgaris L.) Extract-Loaded Nanoliposomes. Food and Bioprocess Technology, 11(9).
[36] Ramos, Ó.L., Rainas, I., Silva, S., Fernandes, J.C., Cerqueira, M., Pereira, R.N., Vicentec, A., Fátima, M., Pintado, M.E., Xavier Malcata, F. (2013). Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocolloids, 30(1), 110-122.
[37] Hosseinnia, M., M.A. Khaledabad, and H. Almasi. (2017). Optimization of Ziziphora clinopodiodes essential oil microencapsulation by whey protein isolate and pectin: A comparative study. International Journal of Biological Macromolecules, 101, 958-966.