تاثیر پیش تیمار اسمزی شکر سفید، شکر قرمز و شیرین بیان بر خواص کیفی قارچ دکمه ای سفید خشک شده (Agaricus Bisporus)

نویسندگان
1 دانشیار دانشگاه علوم کشاورزی و منابع طبیعی ساری
2 دانش آموخته کارشناسی ارشد،گروه علوم و صنایع غذایی، دانشکده مهندسی زراعی، دانشگاه دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری
چکیده
قارچ دکمه­ای سفید (Agaricus Bisporus)، دارای ارزش غذایی قابل توجهی است ولی به دلیل رطوبت زیاد نیاز به تیمارهای ویژه­ای برای افزایش زمان نگهداری دارد. خشک کردن با کاهش فعالیت­های میکروبی، زمان ماندگاری محصول را افزایش و با کاهش وزن و حجم مواد، بسته بندی، حمل و نقل و انبارداری محصولات را سهولت می­بخشد. در این پژوهش پیش تیمار اسمزی برای خشک کردن قارچ دکمه­ای سفیذ با سه نوع قند شیرین بیان، شکر سفید و شکر قرمز در سه غلظت 40، 50 و 60 درصد و سه دمای 25، 5/32 و40 درجه سانتی­گراد به منظور کاهش صدمات حرارتی بر شاخص­های کیفی قارچ در خشک کردن تکمیلی، کاهش زمان خشک کردن، کاهش مصرف انرژی و افزایش راندمان فرآیند استفاده شد. خشک کردن تکمیلی به روش هوای داغ انجام شد. براساس یافته­ها در بین تیمارها شیرین بیان بیشترین میزان از دست دادن رطوبت (74/89 در زمان 132 دقیقه)، جذب مواد جامد (38/10درصد) و تغییر رنگ (470/388E= Δ) و کمترین میزان چروکیدگی (51/63 درصد) را داشت. بیشترین میزان جذب مجدد آب مربوط به شکر سفید بود (در دمای 25 درجه سانتی­گراد، 91/2 گرم بر گرم و غلظت 40 درصد 82/2 گرم بر گرم) بود. در آزمون میکروبی، تیمارها از نظر شمارش کلی کلنی­ها تفاوت معنی­داری نداشته و همچنین در هیچ نمونه­ای کپک و مخمر مشاهده نشد.

موضوعات


عنوان مقاله English

The effect of osmotic pretreatment of white sugar, red sugar and licorice on the quality properties of dried white button mushroom (Agaricus Bisporus)

نویسندگان English

Zeynab Raftani Amiri 1
Zohreh Afzalian 2
1 Associate Professor, Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
2 M.Sc., Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
چکیده English

White button mushrooms (Agaricus Bisporus) have significant nutritional value, but due to high moisture content, they need special treatments to increase the storage time. Drying increases, the shelf life of the product by reducing microbial activity, weight, and volume of products and it causes to pack, transport and store of products easier. IN this study, using the osmotic treatment, three types of sugars Liquorice, white sugar, and red sugar in three concentrations of 40, 50, and 60% and three temperatures of 25, 32.5, and 40 °C to reduce heat damage to the index qualities such as samples color, reducing drying time and energy consumption and increasing process efficiency in supplementary drying which has done by hot air. According to the findings, among the treatments, Liquorice had the highest rate of moisture loss (89.24 in 132 minutes), solids adsorption (10.38%), and discoloration ( ϱ = 388.470) and the lowest rate of wrinkling (63.51%). The highest rehydration rate was related to white sugar (at 25. C, 2.91 gr/gr, and 40% concentration was 2.82 gr/gr). The microbial test did not show a significant effect on the overall counting of the colonies, and no mold or yeast was observed in any of the samples.

کلیدواژه‌ها English

White Button Mushroom – osmotic drying
White Sugar
Red Sugar – Liquorice
[1] Mohammadi abadi H. & hasanzadeh davarani F. (2016). Mushroom, a plant with special effects or a miscellaneous plant. 3rd International Conference on Sustainable Development, Strategies and Challenges Focusing on Agriculture, Natural Resources, Environment and Tourism.
[2] Zarchini, T. & Alivardilo E. (2015). Comprehensive and practical guide to growing oyster mushrooms and other edible mushrooms, Zarrin Farm Technical and Vocational Education Publications.
[3] Tao, Y., Zhang, L., & Cheung, P. C. (2006). Physicochemical properties and antitumor activities of water-soluble native and sulfated hyperbranched mushroom polysaccharides. Carbohydrate Research, 341(13), 2261-2269.
[4] Tao, F., Zhang, M., & Yu, H. Q. (2007). Effect of vacuum cooling on physiological changes in the antioxidant system of mushroom under different storage conditions. Journal of Food Engineering, 79(4), 1302-1309.
[5] Doymaz I. 2007. Convective drying of kinetics of strawberry. Chemical Engineering and Processing. 78: 554–560.
[6] Helpin, L. & Hosahalli, S. R. (2005). Osmotic dehydration. International Journal for Reviews in Postharvest Biology and Technology.
[7] Bongriwar, D.R., & Sreenivasan, A. (1997). Mass transfer in osmotic dehydration with sodium chloride. International Summer Meeting of the ASAE, 88-60.
[8] Lazarides, H. N., & Mavroudis, N. E. (1996). Kinetics of osmotic dehydration of a highly shrinking vegetable tissue in a salt-free medium. Journal of Food Engineering, 30(1-2), 61-74.
[9] Singh, H. (2001). Osmotic dehydration of carrot shreds for Gazraila preparation. Journal of food science and technology (Mysore), 38(2), 152-154.
[10] Orlandi, R., Verruma-Bernardi, M., Sartorio, S., & Borges, M. T. (2017). Physicochemical and Sensory Quality of Brown Sugar: Variables of Processing Study. Journal of Agricultural Science, 9(2), 115-121.
[11] Jafarzadeh, H., Vahabzadeh, F., & Bonakdarpour, B. (2004). Microencapsulation of cream by spray drying method. Iranian Journal of Food Science and Technology, 1(1), 1-6.
[12] Ertekin, C., & Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of food engineering, 63(3), 349-359.
[13] Shukla, B. D., & Singh, S. P. (2007). Osmo-convective drying of cauliflower, mushroom and greenpea. Journal of food engineering, 80(2), 741-747.
[14] Singh, B., Kumar, A., & Gupta, A. K. (2007). Study of mass transfer kinetics and effective diffusivity during osmotic dehydration of carrot cubes. Journal of food Engineering, 79(2), 471-480.
[15] Orishagbemi, C. O., Falad, K. O., Akinoso, R., & Oshundahunsi, O. F. (2010). Assessment of the physico-chemical properties and flavour profiles of foam-mat dehydrated banana powder. Nigerian Food Journal, 28(2).
[16] Kalaras, M. D., Beelman, R. B., Holick, M. F., & Elias, R. J. (2012). Generation of potentially bioactive ergosterol-derived products following pulsed ultraviolet light exposure of mushrooms (Agaricus bisporus). Food chemistry, 135(2), 396-401.
[17] Orishagbemi, C. O., Falad, K. O., Akinoso, R., & Oshundahunsi, O. F. (2010). Assessment of the physico-chemical properties and flavour profiles of foam-mat dehydrated banana powder. Nigerian Food Journal, 28(2).
[18] Tolera, K. D., & Abera, S. (2017). Nutritional quality of Oyster Mushroom (Pleurotus Ostreatus) as affected by osmotic pretreatments and drying methods. Food science & nutrition, 5(5), 989-996.
[19] Kitiban, A., & Asefi, N. (2017). Study of effective penetration and shrinkage of fruit slices " Quince" pretreated with vacuum osmotic drying in the infrared drying process. 2rd International and 25th National Iranian Food Science and Technology Congress.
[20] Hashemi, S. J. (2016). Evaluation of the effect of osmotic and ultrasound pretreatments on quantitative and qualitative properties of button mushroom. The second scientific research conference of Iranian food sciences and industries.
[21] Singh, B., Panesar, P. S., Gupta, A. K., & Kennedy, J. F. (2007). Optimisation of osmotic dehydration of carrot cubes in sucrose-salt solutions using response surface methodology. European Food Research and Technology, 225(2), 157-165.
[22] Rastogi, N. K., Nayak, C. A., & Raghavarao, K. S. M. S. (2004). Influence of osmotic pre-treatments on rehydration characteristics of carrots. Journal of Food Engineering, 65(2), 287-292.
[23] Lewicki, P. P. 1998. Some remarks on rehydration of dried foods. Journal of Food Engineering, 36(1), 81-87.
[24] Asghari Beyram, Z., Basiri, A. (2010). Optimization of hot air osmosis drying process of button edible mushroom slices by response surface methodology. Journal of Food Science and Nutrition, 7(2), 39 – 50.
[25] Afzalian, Z., Raftani Amiri, Z., Farmani, J. (2019). Comparison of Osmotic solution of Sucrose and Salt on Drying White Button Mushrooms. 3rd International and 26th National Iranian Food Science and Technology Congress.
[26] Irani, M., Shafafi Zenozian, M., & Tavakoli Pour, H. (2010). Investigation of mass transfer profile in the process of osmotic drying of fruit. Quarterly Journal of Food Science and Technology, 2(3), 75-65.
[27] İspir, A., & Toğrul, İ. T. (2009). Osmotic dehydration of apricot: Kinetics and the effect of process parameters. Chemical Engineering Research and Design, 87(2), 166-180.
[28] Akbarian, M., Ghasemkhani, N., & Moayedi, F. )2014(. Osmotic dehydration of fruits in food industrial: A review. International Journal of Biosciences, 4(1), 42-57.
[29] Rostamian moghadam, Y., & Sharifzadeh, M. (2017). Effect of process variables on solids uptake (SG) of potato slices by osmotic drying. The Second International Conference on New Research Achievements in Chemistry and Chemical Engineering.
[30] Sabahi, S., Shafafi Zanozian, M., Mortazavi, A. (2008). Investigation of microwave pretreatment and osmotic salt solution on drying celery 2nd Iranian Food Science and Technology Conference.
[31] Lee, J. S., & Lim, L. S. (2011). Osmo-dehydration pretreatment for drying of pumpkin slice. International Food Research Journal, 18(4).
[32] Nsonzi, F., & Ramaswamy, H. S. (1998). Quality evaluation of osmo-convective dried blueberries. Drying Technology, 16(3-5), 705-723.
[33] Rostamian moghadam, Y., & Sharifzadeh, M. (2017). The effect of osmotic drying process on discoloration of potato slices before and after drying. The Second International Conference on New Research Achievements in Chemistry and Chemical Engineering.
[34] Ein Afshar, S. (2014). Physicochemical, microbial and antioxidant properties of four cultivars of dried cherries by osmotic method. Iranian Food Science and Technology Research, 10 (4). .363-374
[35] Gianotti, A., Sacchetti, G., Guerzoni, M. E., & Dalla Rosa, M. (2001). Microbial aspects on short-time osmotic treatment of kiwifruit. Journal of Food Engineering, 49(2-3), 265-270.