[1] G. O. P. A. W. Phillips, Handbook of hydrocolloids. 2000.
[2] A. C. Hoefler, About the Eagan Press Handbook Series The Hydrocolloids. American Association of Cereal Chemists, 2004.
[3] G. O. Phillips and P. A. Williams, Handbook of hydrocolloids, 2nd ed. North America: Published by Woodhead Publishing Limited, Abington Hall, Granta Park, Great Abington, Cambridge CB21 6AH, UK, 2009.
[4] H. L. Chen, H. C. Cheng, Y. J. Liu, S. Y. Liu, and W. T. Wu, “Konjac acts as a natural laxative by increasing stool bulk and improving colonic ecology in healthy adults,” Nutrition, vol. 22, no. 11–12, pp. 1112–1119, 2006.
[5] T. H. DASHTI M., ZARIF KETABI H., PARYAB A.A., “STUDY OF ECOLOGICAL REQUIREMENTS OF FOXTAIL LILLY (EREMURUS SPECTABILIS M.B.) IN KHORASSAN,” Iran. J. RANGE DESERT Res., vol. 12, p. 153 To 165, 2005.
[6] M. J. Hanieh Hadizadeh1, Alireza Babaei*, Leila Samiei2, “Evaluation and Comparison of Morphological Traits of Several Eremurus Species Native to Iran with Ornamental Approach,” pp. 1–4, 2016.
[7] C. Pursh, “COMMON CAMAS,” 1991.
[8] E. G. Shakhmatov, P. V Toukach, S. P. Kuznetsov, and E. N. Makarova, “Structural characteristics of water-soluble polysaccharides from Heracleum sosnowskyi Manden,” Carbohydr. Polym., vol. 102, pp. 521–528, 2014.
[9] G. Cui et al., “Ac ce p te d cr t,” Carbohydr. Polym., 2014.
[10] J. Xie et al., “Advances on Bioactive Polysaccharides from Medicinal Plants Advances on Bioactive Polysaccharides from Medicinal Plants,” vol. 8398, 2016.
[11] H. Karazhiyan, S. M. A. Razavi, and G. O. Phillips, “Food Hydrocolloids Extraction optimization of a hydrocolloid extract from cress seed ( Lepidium sativum ) using response surface methodology,” Food Hydrocoll., vol. 25, no. 5, pp. 915–920, 2011.
[12] A. Koocheki, S. A. Mortazavi, F. Shahidi, S. M. A. Razavi, and A. R. Taherian, “Rheological properties of mucilage extracted from Alyssum homolocarpum seed as a new source of thickening agent,” J. Food Eng., vol. 91, no. 3, pp. 490–496, 2009.
[13] S. M. A. Razavi, S. A. Mortazavi, L. Matia-Merino, S. H. Hosseini-Parvar, A. Motamedzadegan, and E. Khanipour, “Optimisation study of gum extraction from Basil seeds (Ocimum basilicum L.),” Int. J. Food Sci. Technol., vol. 44, no. 9, pp. 1755–1762, 2009.
[14] P. Taylor, A. Bostan, S. M. A. Razavi, and R. Farhoosh, “International Journal of Food Properties Optimization of Hydrocolloid Extraction From Wild Sage Seed ( Salvia macrosiphon ) Using Response Surface,” no. November 2014, pp. 37–41, 2010.
[15] M. Golalikhani, F. Khodaiyan, and A. Khosravi, “Response surface optimization of mucilage aqueous extraction from flixweed (Descurainia sophia ) seeds,” Int. J. Biol. Macromol., vol. 70, pp. 444–449, 2014.
[16] N. Mittal, P. Mattu, and G. Kaur, “Extraction and derivatization of Leucaena leucocephala (Lam .) galactomannan : Optimization and characterization,” Int. J. Biol. Macromol., vol. 92, pp. 831–841, 2016.
[17] F. Mahmoodani, V. S. Ardekani, S. M. Y. See Siau Fern, and A. S. Babji, “Optimization of extraction and physicochemical properties of gelatin from Pangasius Catfish (Pangasius sutchi) skin,” vol. 43, no. 7, pp. 995–1002, 2014.
[18] A. Koocheki, A. R. Taherian, S. M. A. Razavi, and A. Bostan, “Response surface methodology for optimization of extraction yield, viscosity, hue and emulsion stability of mucilage extracted from Lepidium perfoliatum seeds,” Food Hydrocoll., vol. 23, no. 8, pp. 2369–2379, 2009.
[19] P. A. Williams, “Gums and Stabilisers for the Food Industry 12 Edited by RS * C.”
[20] J. Wang, Y. Ma, L. Ouyang, and Y. Tu, “A new Bayesian approach to multi-response surface optimization integrating loss function with posterior probability,” Eur. J. Oper. Res., vol. 249, no. 1, pp. 231–237, 2016.
[21] S. N. and S. R. S M A Razavi, A Bostan, “Functional properties of hydrocolloid extracted from selected domestic Iranian seeds,” p. 11.
[22] Y. Wu, S. W. Cui, J. Tang, and X. Gu, “Food Chemistry Optimization of extraction process of crude polysaccharides from boat-fruited sterculia seeds by response surface methodology,” vol. 105, pp. 1599–1605, 2007.
[23] W. Cui and N. A. M. Eskin, “Chemical and physical properties of yellow mustard ( Sinapis alba L .) mucilage,” vol. 46, pp. 169–176, 1993.
[24] D. Luo, “Optimization of total polysaccharide extraction from Dioscorea nipponica Makino using response surface methodology and uniform design,” Carbohydr. Polym., vol. 90, no. 1, pp. 284–288, 2012.
[25] B. E. Campos, T. D. Ruivo, R. Mônica, S. Scapim, S. Madrona, and R. D. C. Bergamasco, “Optimization of the mucilage extraction process from chia seeds and application in ice cream as a stabilizer and emulsifier,” LWT - Food Sci. Technol., vol. 15, 2015.
[26] A. D. Sekachaei, A. S. Mahoonak, M. Ghorbani, M. Kashaninejad, and Y. Maghsoudlou, “Optimization of ultrasound-assisted extraction of quince seed gum through response surface methodology,” vol. 19, pp. 323–333, 2017.
[27] J. Yang, T. Mu, and M. Ma, “Optimization of ultrasound-microwave assisted acid extraction of pectin from potato pulp by response surface methodology and its characterization,” Food Chem., vol. 289, no. March, pp. 351–359, 2019.
[28] Z. Zamani, S. M. A. Razavi, and M. S. Amir, “The determination of physicomechanical properties of Nettle seed (Urtica pilulifera) and optimization of its mucilage extraction conditions using response surface methodology,” JRIFST, pp. 143–160, 2020.
[29] M. Jouki, S. A. Mortazavi, F. T. Yazdi, and A. Koocheki, “International Journal of Biological Macromolecules Optimization of extraction , antioxidant activity and functional properties of quince seed mucilage by RSM,” Int. J. Biol. Macromol., vol. 66, pp. 113–124, 2014.
[30] O. Tatirat and S. Charoenrein, “LWT - Food Science and Technology Physicochemical properties of konjac glucomannan extracted from konjac fl our by a simple centrifugation process,” LWT - Food Sci. Technol., vol. 44, no. 10, pp. 2059–2063, 2011.
[31] Y. Brummer, W. Cui, and Q. Wang, “Extraction , purification and physicochemical characterization of fenugreek gum,” vol. 17, pp. 229–236, 2003.
[32] A. Kurt and T. Kahyaoglu, “Purification of glucomannan from salep : Part 1 . Detailed rheological characteristics,” Carbohydr. Polym., vol. 168, pp. 138–146, 2017.
[33] P. B. S. Albuquerque et al., “Characterization and rheological study of the galactomannan extracted from seeds of Cassia grandis,” Carbohydr. Polym., vol. 104, pp. 127–134, 2014.
[34] E. Harmayani, V. Aprilia, and Y. Marsono, “Characterization of glucomannan from Amorphophallus oncophyllus and its prebiotic activity in vivo,” Carbohydr. Polym., vol. 112, pp. 475–479, 2014.
[35] B. A. Behbahani, F. T. Yazdi, F. Shahidi, M. A. Hesarinejad, S. A. Mortazavi, and M. Mohebbi, “Plantago major Seed Mucilage : Optimization of extraction and some physicochemical and rheological aspects,” Carbohydr. Polym., 2016.
[36] S. M. A. Razavi, A. Bostan, S. Niknia, and S. Razmkhah, “Functional properties of hydrocolloid extracted from selected domestic Iranian seeds,” Food Res., pp. 380–389, 2011.
[37] R. Farhoosh and A. Riazi, “A compositional study on two current types of salep in Iran and their rheological properties as a function of concentration and temperature,” Food Hydrocoll., vol. 21, no. 4, pp. 660–666, 2007.
[38] W. Cui and G. Mazza, “Phvsicochemical characteristics of flaxseed gum,” vol. 29, no. 1985, 1996.
[39] S. Takigami, Konjac mannan. Japan: Woodhead Publishing Limited, 2009.
[40] Y. V. Anjaneyalu and D. C. Gowda, “Structural studies of an acidic polysaccharide from Ocimum basilicum seeds,” Carbohydr. Res., vol. 75, no. C, pp. 251–256, 1979.
[41] S. M. A. Razavi, S. A. Mortazavi, L. Matia-merino, S. H. Hosseini-parvar, and A. Motamedzadegan, “Original article Optimisation study of gum extraction from Basil seeds ( Ocimum basilicum L .),” pp. 1755–1762, 2009.
[42] X. Huang, Y. Kakuda, and W. Cui, “Hydrocolloids in emulsions : particle size distribution and interfacial activity,” vol. 15, 2001.
[43] E. I. Yaseen, T. J. Herald, F. M. Aramouni, and S. Alavi, “Rheological properties of selected gum solutions,” vol. 38, pp. 111–119, 2005.