بهینه یابی شرایط استخراج صمغ ریشه سریش به روش سطح پاسخ و بررسی خصوصیات فیزیکوشیمیایی نمونه بهینه

نویسندگان
1 دانشجوی کارشناسی ارشد، گروه علوم و مهندسی صنایع غذایی، دانشگاه فردوسی مشهد، ایران
2 استاد، گروه علوم و مهندسی صنایع غذایی، دانشگاه فردوسی مشهد، ایران
3 استادیار، گروه زیست شناسی، دانشگاه پیام نور، تهران، ایران
چکیده
صمغ­های استخراج‌شده از منابع مختلف دارای خصوصیات عملکردی و رئولوژیکی متفاوتی نسبت به یکدیگر بوده که شرایط استخراج تأثیر بسزایی بر این خواص دارد. از این‌ رو مطالعه روش استخراج منابع جدید صمغ­ها و بهینه یابی آن، با توجه به رفتار­های متفاوت صمغ­ها نسبت به یکدیگر، بیش‌ازپیش اهمیت پیدا کرده است. در این پژوهش، بهینه یابی شرایط استخراج گلوکومانان ریشه سریش به‌عنوان یک منبع جدید هیدروکلوئیدی مورد مطالعه قرار گرفته است. برای این منظور، اثر دما (80-30 درجه سانتی‌گراد)، نسبت آب به ماده جامد (100-50) و زمان (4-1 ساعت) بر راندمان استخراج، ویسکوزیته ظاهری و حلالیت با روش سطح پاسخ مدلسازی و بهینه یابی شد. نتایج نشان داد مدل درجه دو بهترین مدل برای توصیف داده­ها می­باشد. دمای 79 درجه سانتی‌گراد، نسبت آب به ماده جامد 3/98 به 1 و زمان 3 ساعت و 12 دقیقه بهینه شرایط استخراج به دست آمد. تحت این شرایط، مقدار ویسکوزیته ظاهری 250 میلی پاسکال ثانیه، حلالیت 99/53 درصد و راندمان استخراج 43/72 درصد محاسبه شد. نتایج آنالیز ترکیبات شیمیایی نشان داد که نمونه بهینه بر مبنای وزن خشک دارای کربوهیدرات 52/86 درصد، 22/6 درصد پروتئین، 13/6 درصد رطوبت و 17/4 درصد املاح بودند. نتایج آنالیز منوساکاریدها نیز نشان داد صمغ ریشه سریش با نسبت گلوکز به مانوز 1/1 به 1 از خانواده گلوکومانان ها است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of hydrocolloid extraction from serish root (eremurus luteus) using response surface method and examining physicochemical characterization of the optimized sample

نویسندگان English

Mahdi Salahi 1
Seyed Mohammad Ali Razavi 2
mohammad sadegh Sadegh Amiri 3
1 MSc Student, Department of Food Science and Engineering, Ferdowsi University of Mashhad, Iran.
2 Academic member
3 Assistant Professor, Department of Biology, Payame Noor University, Tehran, Iran.
چکیده English

The gums extracted from different sources have different functional and rheological properties compared to each other, and the extraction conditions have significant effects on these properties. Therefore, the study on the method of extraction and optimization of new sources of gums, due to different gum behaviors towards each other, has become more important. In this study, the optimization of extraction conditions for glucomannan of Eremurus Luteus powder (Serish) as a new source of hydrocolloid has been studied. For this purpose, the effect of temperature (30-80°C), water-to-solid ratio (50-100%) and time (1-4 hours) on the extraction yield, apparent viscosity, and solubility were optimized using the response surface methodology. The results showed that the quadratic model is the best model to describe the data. The optimized conditions were temperature of 79°C, water to solids ratio of 98.3 to 1 and extraction time of 3 hours and 12 minutes. Under these conditions, the apparent viscosity of 250 mPa.s, solubility of 53.99% and extraction yield of 72.43% were obtained. The results of chemical composition analysis showed that the optimal sample based on dry weight had 86.25% carbohydrates, 6.22% (protein), 6.13% (moisture) and 4.17% (ash). The results of monosaccharide analysis showed that in Eremurus root gum, the ratio of glucose to mannose was 1.1 to 1 and belonged to the glucomannan family.

کلیدواژه‌ها English

Eremurus Luteus Root
Extraction
Hydrocolloid
Optimization
Response surface method
[1] G. O. P. A. W. Phillips, Handbook of hydrocolloids. 2000.
[2] A. C. Hoefler, About the Eagan Press Handbook Series The Hydrocolloids. American Association of Cereal Chemists, 2004.
[3] G. O. Phillips and P. A. Williams, Handbook of hydrocolloids, 2nd ed. North America: Published by Woodhead Publishing Limited, Abington Hall, Granta Park, Great Abington, Cambridge CB21 6AH, UK, 2009.
[4] H. L. Chen, H. C. Cheng, Y. J. Liu, S. Y. Liu, and W. T. Wu, “Konjac acts as a natural laxative by increasing stool bulk and improving colonic ecology in healthy adults,” Nutrition, vol. 22, no. 11–12, pp. 1112–1119, 2006.
[5] T. H. DASHTI M., ZARIF KETABI H., PARYAB A.A., “STUDY OF ECOLOGICAL REQUIREMENTS OF FOXTAIL LILLY (EREMURUS SPECTABILIS M.B.) IN KHORASSAN,” Iran. J. RANGE DESERT Res., vol. 12, p. 153 To 165, 2005.
[6] M. J. Hanieh Hadizadeh1, Alireza Babaei*, Leila Samiei2, “Evaluation and Comparison of Morphological Traits of Several Eremurus Species Native to Iran with Ornamental Approach,” pp. 1–4, 2016.
[7] C. Pursh, “COMMON CAMAS,” 1991.
[8] E. G. Shakhmatov, P. V Toukach, S. P. Kuznetsov, and E. N. Makarova, “Structural characteristics of water-soluble polysaccharides from Heracleum sosnowskyi Manden,” Carbohydr. Polym., vol. 102, pp. 521–528, 2014.
[9] G. Cui et al., “Ac ce p te d cr t,” Carbohydr. Polym., 2014.
[10] J. Xie et al., “Advances on Bioactive Polysaccharides from Medicinal Plants Advances on Bioactive Polysaccharides from Medicinal Plants,” vol. 8398, 2016.
[11] H. Karazhiyan, S. M. A. Razavi, and G. O. Phillips, “Food Hydrocolloids Extraction optimization of a hydrocolloid extract from cress seed ( Lepidium sativum ) using response surface methodology,” Food Hydrocoll., vol. 25, no. 5, pp. 915–920, 2011.
[12] A. Koocheki, S. A. Mortazavi, F. Shahidi, S. M. A. Razavi, and A. R. Taherian, “Rheological properties of mucilage extracted from Alyssum homolocarpum seed as a new source of thickening agent,” J. Food Eng., vol. 91, no. 3, pp. 490–496, 2009.
[13] S. M. A. Razavi, S. A. Mortazavi, L. Matia-Merino, S. H. Hosseini-Parvar, A. Motamedzadegan, and E. Khanipour, “Optimisation study of gum extraction from Basil seeds (Ocimum basilicum L.),” Int. J. Food Sci. Technol., vol. 44, no. 9, pp. 1755–1762, 2009.
[14] P. Taylor, A. Bostan, S. M. A. Razavi, and R. Farhoosh, “International Journal of Food Properties Optimization of Hydrocolloid Extraction From Wild Sage Seed ( Salvia macrosiphon ) Using Response Surface,” no. November 2014, pp. 37–41, 2010.
[15] M. Golalikhani, F. Khodaiyan, and A. Khosravi, “Response surface optimization of mucilage aqueous extraction from flixweed (Descurainia sophia ) seeds,” Int. J. Biol. Macromol., vol. 70, pp. 444–449, 2014.
[16] N. Mittal, P. Mattu, and G. Kaur, “Extraction and derivatization of Leucaena leucocephala (Lam .) galactomannan : Optimization and characterization,” Int. J. Biol. Macromol., vol. 92, pp. 831–841, 2016.
[17] F. Mahmoodani, V. S. Ardekani, S. M. Y. See Siau Fern, and A. S. Babji, “Optimization of extraction and physicochemical properties of gelatin from Pangasius Catfish (Pangasius sutchi) skin,” vol. 43, no. 7, pp. 995–1002, 2014.
[18] A. Koocheki, A. R. Taherian, S. M. A. Razavi, and A. Bostan, “Response surface methodology for optimization of extraction yield, viscosity, hue and emulsion stability of mucilage extracted from Lepidium perfoliatum seeds,” Food Hydrocoll., vol. 23, no. 8, pp. 2369–2379, 2009.
[19] P. A. Williams, “Gums and Stabilisers for the Food Industry 12 Edited by RS * C.”
[20] J. Wang, Y. Ma, L. Ouyang, and Y. Tu, “A new Bayesian approach to multi-response surface optimization integrating loss function with posterior probability,” Eur. J. Oper. Res., vol. 249, no. 1, pp. 231–237, 2016.
[21] S. N. and S. R. S M A Razavi, A Bostan, “Functional properties of hydrocolloid extracted from selected domestic Iranian seeds,” p. 11.
[22] Y. Wu, S. W. Cui, J. Tang, and X. Gu, “Food Chemistry Optimization of extraction process of crude polysaccharides from boat-fruited sterculia seeds by response surface methodology,” vol. 105, pp. 1599–1605, 2007.
[23] W. Cui and N. A. M. Eskin, “Chemical and physical properties of yellow mustard ( Sinapis alba L .) mucilage,” vol. 46, pp. 169–176, 1993.
[24] D. Luo, “Optimization of total polysaccharide extraction from Dioscorea nipponica Makino using response surface methodology and uniform design,” Carbohydr. Polym., vol. 90, no. 1, pp. 284–288, 2012.
[25] B. E. Campos, T. D. Ruivo, R. Mônica, S. Scapim, S. Madrona, and R. D. C. Bergamasco, “Optimization of the mucilage extraction process from chia seeds and application in ice cream as a stabilizer and emulsifier,” LWT - Food Sci. Technol., vol. 15, 2015.
[26] A. D. Sekachaei, A. S. Mahoonak, M. Ghorbani, M. Kashaninejad, and Y. Maghsoudlou, “Optimization of ultrasound-assisted extraction of quince seed gum through response surface methodology,” vol. 19, pp. 323–333, 2017.
[27] J. Yang, T. Mu, and M. Ma, “Optimization of ultrasound-microwave assisted acid extraction of pectin from potato pulp by response surface methodology and its characterization,” Food Chem., vol. 289, no. March, pp. 351–359, 2019.
[28] Z. Zamani, S. M. A. Razavi, and M. S. Amir, “The determination of physicomechanical properties of Nettle seed (Urtica pilulifera) and optimization of its mucilage extraction conditions using response surface methodology,” JRIFST, pp. 143–160, 2020.
[29] M. Jouki, S. A. Mortazavi, F. T. Yazdi, and A. Koocheki, “International Journal of Biological Macromolecules Optimization of extraction , antioxidant activity and functional properties of quince seed mucilage by RSM,” Int. J. Biol. Macromol., vol. 66, pp. 113–124, 2014.
[30] O. Tatirat and S. Charoenrein, “LWT - Food Science and Technology Physicochemical properties of konjac glucomannan extracted from konjac fl our by a simple centrifugation process,” LWT - Food Sci. Technol., vol. 44, no. 10, pp. 2059–2063, 2011.
[31] Y. Brummer, W. Cui, and Q. Wang, “Extraction , purification and physicochemical characterization of fenugreek gum,” vol. 17, pp. 229–236, 2003.
[32] A. Kurt and T. Kahyaoglu, “Purification of glucomannan from salep : Part 1 . Detailed rheological characteristics,” Carbohydr. Polym., vol. 168, pp. 138–146, 2017.
[33] P. B. S. Albuquerque et al., “Characterization and rheological study of the galactomannan extracted from seeds of Cassia grandis,” Carbohydr. Polym., vol. 104, pp. 127–134, 2014.
[34] E. Harmayani, V. Aprilia, and Y. Marsono, “Characterization of glucomannan from Amorphophallus oncophyllus and its prebiotic activity in vivo,” Carbohydr. Polym., vol. 112, pp. 475–479, 2014.
[35] B. A. Behbahani, F. T. Yazdi, F. Shahidi, M. A. Hesarinejad, S. A. Mortazavi, and M. Mohebbi, “Plantago major Seed Mucilage : Optimization of extraction and some physicochemical and rheological aspects,” Carbohydr. Polym., 2016.
[36] S. M. A. Razavi, A. Bostan, S. Niknia, and S. Razmkhah, “Functional properties of hydrocolloid extracted from selected domestic Iranian seeds,” Food Res., pp. 380–389, 2011.
[37] R. Farhoosh and A. Riazi, “A compositional study on two current types of salep in Iran and their rheological properties as a function of concentration and temperature,” Food Hydrocoll., vol. 21, no. 4, pp. 660–666, 2007.
[38] W. Cui and G. Mazza, “Phvsicochemical characteristics of flaxseed gum,” vol. 29, no. 1985, 1996.
[39] S. Takigami, Konjac mannan. Japan: Woodhead Publishing Limited, 2009.
[40] Y. V. Anjaneyalu and D. C. Gowda, “Structural studies of an acidic polysaccharide from Ocimum basilicum seeds,” Carbohydr. Res., vol. 75, no. C, pp. 251–256, 1979.
[41] S. M. A. Razavi, S. A. Mortazavi, L. Matia-merino, S. H. Hosseini-parvar, and A. Motamedzadegan, “Original article Optimisation study of gum extraction from Basil seeds ( Ocimum basilicum L .),” pp. 1755–1762, 2009.
[42] X. Huang, Y. Kakuda, and W. Cui, “Hydrocolloids in emulsions : particle size distribution and interfacial activity,” vol. 15, 2001.
[43] E. I. Yaseen, T. J. Herald, F. M. Aramouni, and S. Alavi, “Rheological properties of selected gum solutions,” vol. 38, pp. 111–119, 2005.