[1] Wan, M. L., Ling, K., El-Nezami, H., & Wang, M. 2019. Influence of functional food components on gut health. Critical reviews in food science and nutrition, 59(12), 1927-1936.
[2] Mousavi, Z.E., S.M., Mousavi, S.H., Razavi, Z., Emam_Djomeh, H., Kiani. 2011. Fermontation of pomegranate juice by probiotic lactic acid bacteria. World Microbiological and Biotechnological. 27:123-128.
[3] Zhao, H., Li, J., Zhang, Y., Lei, S., Zhao, X., Shao, D., Jiang, C., Shi, J., & Sun, H. 2018. Potential of iturins as functional agents: safe, probiotic, and cytotoxic to cancer cells. Food & function, 9(11), 5580-5587.
[4] Min, M., Bunt, C. R., Mason, S. L., & Hussain, M. A. 2019. Non-dairy probiotic food products: An emerging group of functional foods. Critical reviews in food science and nutrition, 59(16), 2626-2641.
[5] Amalaradjou, M., Bhunia, A., 2012. Modern Approaches in Probiotics Research to Control Foodborne Pathogens. Advance in Food Nutrition and Research. 67, 185-224.
[6] Vernazza, C. L., Rabiu, B. A., & Gibson, G. R. 2006. Human colonic microbiology and the role of dietary intervention: introduction to prebiotics. P. 1-28. In G. R. Gibson., & R. A. Rastall. (ed.). Prebiotics: Development and Application. John Wiley & Sons, Ltd.
[7] Kavitake, D., Kandasamy, S., Devi, P. B., & Shetty, P. H. 2018. Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods–A review. Food Bioscience, 21, 34-44.
[8] Gomez-Mascaraque, L. G., R. C., Murfin, R., Perez-Masia, G., Sanchez, A., Lopez-Rubio. 2016. Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in vitrodigestion. LWT. 13, 23-34.
[9] Muhammad, Z., Ramzan, R., Huo, G.-C., Tian, H., & Bian, X. 2017. Integration of polysaccharide-thermoprotectant formulations for microencapsulation of Lactobacillus plantarum, appraisal of survivability and physico-biochemical properties during storage of spray dried powders. Food Hydrocolloids. 66, 286-295.
[10] Sunny-Roberts, E. O., Knorr, D. 2009. The protective effect of monosodium glutamate on survival of Lactobacillus rhamnosus GG and Lactobacillus rhamnosus E-97800 (E800) strains during spray-drying and storage in trehalose-containing powders. Int Dairy J. 19: 209–214.
[11] Hosseini, S. M. H., Gahruie, H. H., Razmjooie, M., Sepeidnameh, M., Rastehmanfard, M., Tatar, M., Naghibalhossaini, F., & Van der Meeren, P. 2019. Effects of novel and conventional thermal treatments on the physicochemical properties of iron-loaded double emulsions. Food chemistry, 270, 70-77.
[12] Rajam, R., & Anandharamakrishnan, C. 2015. Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. LWT. 60(2), 773-780.
[13] Danner, T., & Schubert, H. 2001. Food colloids: Fundamentals of formulation. In D. Eric., M. Reinhard (Eds.), Coalescence processes in emulsions (pp. 116-124). Royal Society of Chemistry: Cambridge.
[15] Flores-Andrade, E., Pascual-Pineda, L. A., Alarcón-Elvira, F. G., Rascón-Díaz, M. P., Pimentel-González, D. J., & Beristain, C. I. 2017. Effect of vacuum on the impregnation of Lactobacillus rhamnosus microcapsules in apple slices using double emulsion. Journal of Food Engineering. 202, 18-24.
[14] Rodríguez-Huezo, M., Estrada-Fernández, A., García-Almendárez, B., Ludena-Urquizo, F., Campos-Montiel, R., & Pimentel-González, D. 2014. Viability of Lactobacillus plantarum entrapped in double emulsion during Oaxaca cheese manufacture, melting and simulated intestinal conditions. LWT, 59(2), 768-773.
[16] Pimentel-González, D. J., Campos-Montiel, R. G., Lobato-Calleros, C., Pedroza-Islas, R., & Vernon-Carter, E. J. 2009. Encapsulation of Lactobacillus rhamnosus in double emulsions formulated with sweet whey as emulsifier and survival in simulated gastrointestinal conditions. Food Research International. 42(2), 292-297.
[17] Esteban, P. P., Jenkins, A. T. A., & Arnot, T. C. 2016. Elucidation of the mechanisms of action of Bacteriophage K/nano-emulsion formulations against S. aureus via measurement of particle size and zeta potential. Colloid and Surfaces B. 139, 87-94.
[18] Becker Peres, L., Becker Peres, L., de Araújo, P. H. H., & Sayer, C. 2016. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloid Surfaces B. 140, 317-323.
[19] Aditya, N. P., Aditya, S., Yang, H., Kim, H. W., Park, S. O., & Ko, S. 2015. Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Food chemistry. 173, 7-13.
[20] Santivarangkna, C., Kulozik, U., & Foerst, P. 2008. Inactivation mechanisms of lactic acid starter cultures preserved by drying processes. Journal of Applied Microbiology, 105(1), 1-13.
[21] El Kadri, H., Lalou, S., Mantzouridou, F., & Gkatzionis, K. 2018. Utilisation of water-in-oil-water (W1/O/W2) double emulsion in a set-type yogurt model for the delivery of probiotic Lactobacillus paracasei. Food Research International, 107, 325-336.
[22] López-Rubio, A., Sanchez, E., Wilkanowicz, S., Sanz, Y., & Lagaron, J. M. 2012. Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocolloids, 28, 159–167.
[23] Coghetto, C. C., Brinques, G. B., Siqueira, N. M., Pletsch, J., Soares, R. M. D., & Ayub, M. A. Z. 2016. Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. Journal of Functional Foods, 24, 316-326.