استخراج و تحلیل خطاهای فرآیند تولید با استفاده از PFMEA (مطالعه موردی: کارخانه قند کردستان)

نویسندگان
1 گروه آموزشی مدیریت، واحد سقز، دانشگاه آزاد اسلامی، سقز، ایران.
2 استاد، گروه آموزشی مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران.
3 استادیار، گروه آموزشی مدیریت، دانشکده مدیریت و حسابداری، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران.
چکیده
هدف از این تحقیق شناسایی حالت‏های بالقوه خطا در فرآیند تولید کارخانه قند کردستان است. در این پژوهش ابتدا نقشه فرآیندهای سازمانی خط تولید با استفاده از منطق مدل‏سازی IDEF0 بطور دقیق استخراج شد تا تمامی جنبه‏ها و مراحل و فعالیت‏های فرآیند تولید قند از شکر خام بصورت شماتیک و تصویری مورد مطالعه دقیق قرار گیرد. سپس در قالب کار تیمی و در جلسات متعدد و تخصصی تعداد 49 خطای اصلی و بالقوه موجود در تمامی مراحل و فعالیت‏های فرآیند تولید قند، شناسایی شد. در ادامه در جلسات متعدد میزان شدت خطا، احتمال وقوع خطاها و احتمال کشف خطاها تعیین و با استفاده از میزان RPN (نمره اولویت خطا) برای هر کدام از خطاها استخراج گردید. در ادامه علل اصلی و ریشه‏ای 24 خطای اولویت دار بوسیله آنالیز درختی خطا FTA)) مشخص شد و باتوجه به علل خطاها، راهکارهای مناسب برای کاهش آثار خطاها مستندسازی گردید. در نهایت منشاء خطاهای فرآیندی مورد تجزیه و تحلیل قرار گرفت.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Extraction and analysis of production process Failures using PFMEA logic (case study: Kurdistan Sugar factory)

نویسندگان English

mohammad baghbani 1
Soleyman Iranzadeh 2
Majid Bagherzadeh khajeh 3
1 Ph.D. Student
2 Prof, Department of Industrial Management, Tabriz Branch, Islamic Azad University, Tabriz, Iran
3 Assistant Prof, Department of Management, Tabriz Branch, Islamic Azad University, Tabriz, Iran
چکیده English

The purpose of this research is to identify possible failures modes in the process of producing Kurdistan sugar factory. In this research, firstly, the Process map of the production process by using the IDEF0 modeling logic was extracted accurately in order to schematically analyze all the aspects and processes of sugar production from raw sugar. Then, in the form of teamwork and at various expert meetings, 49 major and potential failures were identified in all processes and activities of the sugar production process. In the following sessions, the failure severity, the probability of occurrence of failures and the probability of error detection were determined. Using the RPN (risk priority number) was extracted for each failure. In the following, the root causes of the 24 priority failures were determined by FTA, and due to the causes of the errors, suitable solutions to reduce the effects of failures were documented. Finally, the origins of process failures were analyzed.

کلیدواژه‌ها English

PFMEA
Process Map
IDEF0
FTA
[1] Helvacioglu, S. and E. Ozen. 2014.Fuzzy based failure modes and effect analysis for yacht system design. Ocean Engineering. Ocean Engineering, 79: p. 131-141.
[2] Hassan, A., et al. 2010.Conceptual process planning – an improvement approach using QFD, FMEA, and ABC methods. Robotics and Computer-Integrated Manufacturing. 26(4): p. 392-401.
[3] Banduka, N., et al. 2016. Using 80/20 Principle to Improve Decision Making At PFMEA. in 27TH Daaam International Symposium On Intelligent Manufacturing And Automation. Vienna, Austria.
[4] Cândeaa, G., S. Kifor, and C. Constantinescu. 2014. Usage of case-based reasoning in FMEA-driven software, in Conference on Digital Enterprise Technology - DET 2014 – Disruptive Innovation in Manufacturing Engineering towards the 4th Industrial Revolution.
[5] Mariajayaprakash, A. and T. Senthilvelan. 2013.Failure detection and optimization of sugar mill boiler usingFMEA and Taguchi method. Engineering Failure Analysis. 30: p. 17-26.
[6] Mariajayaprakash, A., T. Senthilvelan, and R. Gnanadass. 2015. Optimization of process parameters through fuzzy logic and genetic algorithm–Acase study in a process industry. Applied Soft Computing. 30: p. 94–103.
[7] Asan, U. and A. Soyer. 2016. Chapter 10:Failure Mode and Effects Analysis Under Uncertainty: A Literature Review and Tutorial, in Intelligent Decision Making in Quality Management. In C. Kahraman, & S. Yanık, . p. 266.
[8] Lundgren, M., M. Hedlind, and T. Kjellberg. 2016.Model Driven Manufacturing Process Design and Managing Quality, in 26th CIRP Design Conference. .
[9] Stamatis, D.H. 2003. Failure mode and effect analysis: FMEA from theory to execution: Milwaukee: American Society for Quality, Quality Press, John Wiley & Sons, Ltd. .
[10] Nuchpho, P., S. Nansaarng, and A. Pongpullponsak. 2014. Risk Assessment in the organization by using FMEA Innovation: A Literature Review, in 7th International Conference on Educational Reform.
[11] Liu, H.-C., et al. 2012. Risk evaluation in failure mode and effects analysis with extended VIKOR method under fuzzy environment. Expert Systems with Applications. 39(17): p. 12926-12934.
[12] E.McDermott, et al., The basic of FMEA. 2nd edition ed ed. 2009, New York: Taylor & Francis Group.
[13] Chang, K.H. and T.C. Wen. 2010. Novel efficient approach for DFMEA combining 2-tuple and the OWA operator. Expert Systems with Applications,. 37: p. 2362–2370.
[14] Rezaei, K., M. Sidi, and B. Nouri. 2005. Analysis of Errors and Effects of It. Second Edition of Tehran ed.: Athena.
[15] Kalathil, M.J., V.R. Renjith, and N.R. 2020. Augustine, Failure mode effect and criticality analysis using dempster shafer theory and its comparison with fuzzy failure mode effect and criticality analysis: Acase study applied to LNG storage facility. Process Safety and Environmental Protection, 138: p. 337-348.
[16] Mentes, A., et al. 2015. A FSA based fuzzy DEMATEL approach for risk assessment of cargo ships at coasts and open seas of Turkey. Safety Science, p. 5.
[17] Johnson, K. and M. Khan. 2003. A study into the use of the process failure mode and effects analysis (PFMEA) in the automotive industry in the UK. Journal of Materials Processing Technology,. 139: p. 348–356.
[18] Braglia, M., M. Frosolini, and R. Montanari. 2003. Fuzzy criticality assessment model for failure modes and effects analysis. International Journal of Quality & Reliability Management. 20(4): p. 503-524.
[19] Chen, Z., X. Wu, and J. Qin. 2014. Risk assessment of an oxygen-enhanced combustor using a structural model based on the FMEA and fuzzy fault tree. Journal of Loss Prevention in the Process Industries. 32: p. 349-357.
[20] Peeters, J., R. Basten, and T. Tinga. 2017. Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner. E. T. Universiteit, Ed. 528.
[21] Rezaei, K., M. Sidi, and B. Nouri. 2005. Analysis of Errors and Effects of It. Second Edition. Tehran: Athena(in persian).
[22] NASA, Fault Tree Handbook writh Aerospace application, ed. E. V. 1.1. 2002. Washington: Prepared for NASA Office of Safety and Mission Assurance; NASA Headquarters. Retrieved 0918,aceess 21 apr 2017.
[23] NASA, Fault Tree Handbook writh Aerospace application, ed. V. 1.1. 2002. Washington: Prepared for NASA Office of Safety and Mission Assurance;NASA Headquarters.
[24] Rahmanzade Heravi, M., Process Organizations and Organizational Paradigms. 2003, Tehran: Publication of Publications Office.