تاثیر پیش تیمار فراصوت و آنزیم بری بر روی کیفیت فیزیکی و ترمودینامیکی هویج سرخ شده تحت شرایط عمیق و مدل سازی چروکیدگی به کمک شبکه عصبی مصنوعی

نویسندگان
1 دانشجوی کارشناسی ارشد مهندسی علوم وصنایع غذایی، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران
2 استاد یار گروه مهندسی علوم وصنایع غذایی، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران
چکیده
سرخ کردن عمیق یک روش رایج در آماده‌سازی سریع ماده غذایی با ویژگی‌های حسی مطلوب می‌باشد. میزان جذب روغن، تحت تاثیر عوامل مختلفی مانند شرایط فرایند (دما و زمان)، پیش‌تیمارها، ویژگی‌های فیزیکوشیمیایی ماده غذایی، منشاء روغن، ترکیب شیمیایی روغن و موارد دیگر می‌باشد. هدف از این پژوهش بررسی پیش تیمار فراصوت و آنزیم‌بری بر روی کیفیت فیزیکی و ترمودینامیکی هویج سرخ شده تحت شرایط عمیق می‌باشد. در این پژوهش رطوبت، محتوای روغن، دانسیته ظاهری، ضریب انتشار موثر رطوبت مورد بررسی قرار گرفت و میزان چروکیدگی توسط شبکه عصبی نیز مدل‌سازی شد. نتایج نشان داد که استفاده از پیش‌تیمارهای تلفیقی فراصوت و آنزیم‌بری باعث کاهش چروکیدگی، کاهش جذب روغن، افزایش دانسیته ظاهری در دمای 160 درجه سانتی‌گراد و افزایش ضریب انتشار موثر رطوبت در دمای 180 درجه سانتی‌گراد می‌باشد. همچنین مدل‌سازی چروکیدگی با شبکه عصبی نیز نشان دهنده همبستگی و همپوشانی بسیار خوب مقادیر پیش‌بینی شده توسط شبکه در مقابل مقادیر واقعی است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of ultrasound and blanching on the quality, physical and thermodynamic properties of deep fried carrots and modeling of shrinkage by artificial neural network

نویسندگان English

nadia simintan khoubroo 1
Narmela Asefi 2
1 no
2 Assistant Professor, Department of Food Engineering, Islamic Azad University, Tabriz Branch, Tabriz, Iran
چکیده English

Deep frying is a common practice in fast food preparation with optimal sensory properties. various factors such as process conditions (temperature and time), pH, physicochemical properties of the food, the origin of the oil, the chemical composition of the oil have affected on the amount of oil absorption. The purpose of this study was to investigate the ultrasound and blanching pre-treatment on the physical and thermodynamic quality of fried carrots under deep conditions. In this study, moisture content, oil content, bulk density, effective moisture diffusion coefficient were investigated and the rate of modeling of shrinkage was done by the neural network. The results showed that the use of a combination of ultrasound and blanching pretreatment resulted in reduced shrinkage, decreased oil absorption, increased apparent density at 160 ° C, and an increase in the effective emission factor of moisture content at 180 ° C. Moreover the modeling of neural network shrinkage showed a good correlation and overlap between the values predicted by the network versus actual values.

کلیدواژه‌ها English

Blanched pretreatment
Carrots
Neural network modeling
Ultrasound pretreatment
1. Koley, T., Singh, S., Khemariya, P., Sarkar, A., Kaur, C., Chaurasia, S., Naik, P. 2014. Evaluation of bioactive properties of Indian carrot (Daucus carota L.): A chemometric approach. Food research international, 60, 76-85.
2. Singh, D., Beloy, J., Mcinery, J., Li, D. 2012. Impact of boron, calcium and genetic factors on vitamin C, carotenoids, phenolic acids, antioxidant capacity of carrots (Daucus carota). Food chemistry, 132, 1161-1170.
3. Fan, L., Zhang, M., Xiao, G., Sun, J., Tao, G. 2005. The optimization of vacuum frying to dehydrate carrot chips. International journal of food science and technology, 40, 911-919.
4. Bouchon, P., & Steve, L. T. 2009. Understanding oil absorption during deep-fat frying. Advances in Food and Nutrition Research, vol. 57, 209-234. Academic Press.
5. Mir-Bel, J., Oria, R., & Salvador, M. L. 2009. Influence of the vacuum break conditions on oil uptake during potato post-frying cooling. Journal of Food Engineering, 95(3), 416-422.
6. Datta, A.K. 2007. Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: Problem formulations. Journal of Food Engineering, 80, 80-95.
7. Krokida, M.K., Oreopoulou, V., Maroulis, Z.B and Marinos-Kouris, D. 2000. Water loss and oil uptake as a function of frying time. Journal of Food Engineering, 44, 39–46.
8. Lamberg, I., Hallstrom, B., and Olsson, H. 1990. Fat uptake in a potato drying frying process. LWT- Food science and Technology, 23, 295-300.
9. Williams, R., & Mittal, G. S. 1999. Low-fat fried foods with edible coatings: Modeling and simulation. Journal of Food Science, 24,183-187.
10. Bunger, A., Moyano, P., & Rioseco, V. 2003. NaCl soaking treatment for improving the quality of French-fried potatoes. Food Research International, 36, 161-166.
11. Pedreschi, F., Claudia, C., Moyano, P., & Troncoso, E. 2008. Oil distribution in potato slices during frying. Journal of Food Engineering, 87, 200-212.
12. Fengxia, S.D., Zhanming, Z. 2001. Determination of oil color by image analysis. Journal of American oil chemistry society, 78, 749-752.
13. Fernandes, F. A. N., Gallao, M. I., & Rodrigues, S. 2009. Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 90(2), 186-190.
14. Garcia-Perez, J., Carcel, J., De la FuenteBlanco, S., & Riera-Franco de Sarabia, E. 2006. Ultrasonic drying of foodstuff in a fluidized bed: Parametric study, Ultrasonics, 44, e539-e543.
15. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1986. Learning internal representations by error propagation. Parallel data Processing,1, 318-362.
16. Sreekanth, S., Ramaswamy, H. S., Sablani, S. S., & Prasher, S. O. 1999. A neural network approach for evaluation of surface heat transfer coefficient, J. Food Process. Preserv. 23, 329-348.
17. Hernandez. J. A., Perez, Garcia, M. A., Alvarado, Trystran, G. & Heyd, B. 2004. Neural networks for the heat transfer prediction during drying of cassava and mango. Journal of Innovative Food Science and Emerging Technologies, 5, 57-64.
18. AOAC.1990. Official Methods of Analysis (15th ed), Association of Official Analytical Chemists, Washington, DC.
19. AOAC. 1995. Official Methods of Analysis, Association of Official Analytical Chemists, Washington, DC.
20. Ziaiifar, A.M., Courtois, F., and Trystram, G. 2010. Porosity development and its effect on oil uptake during frying process. Journal of Food Process Engineering 33(2), 191-212.
21. Troncoso, E., and Pedreschi, F. 2009. Modeling water loss and oil uptake during vacuum frying of pre-treated potato slices. LWT - Food Science and Technology, 42(6), 1164-1173.
22. Esfandiyari-Darabad, F. 2010. The average monthly temperature in Sanandaj synoptic forecast models using artificial neural network Multilayer Perceptron (MLP). J. Soci. Geograph. Iran, 27, 45-64. (in Farsi)
23. Califano, A. N., & Calvelo, A. 1987. Adjustment of surface concentration of reducing sugars before frying of potato strips. Journal of Food Processing and Preservation, 12, 1-9.
24. Bouchon, P., Aguilera, J. M., & Pyle, D. L. 2003. Structure oil-absorption relationships during deep-fat frying. Journal of Food Science, 68, 2711-2716.
25. Fernandes FAN and Rodrigue S, 2008. Application of ultrasound and ultrasound-assisted osmotic dehydration in drying of fruits. Drying Technology, 26, 1509-1516.