کنترل مراحل رسیدگی گوجه‌فرنگی گیلاسی پوشش‌دهی شده با ژل آلوئه‌ورا با استفاده از سامانه بینایی مصنوعی

نویسندگان
1 گروه علوم و مهندسی صنایع غذایی، دانشگاه زنجان
2 دانشجوی کارشناسی ارشد فناوری مواد غذایی، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران
چکیده
کنترل مراحل رسیدگی فرآورده‌های کشاورزی طی نگهداری و درجه‌بندی کیفی آنها بر اساس مرحله رسیدگی از اهمیت بالایی برخوردار است. پوشش‌های خوراکی می‌توانند عمر انبارمانی فرآورده‌های کشاورزی را افزایش دهند و از آنها طی عملیات جابجایی، نگهداری، فرآوری و عرضه به بازار مصرف محافظت نمایند. هدف از پژوهش حاضر ایجاد سامانه‌ای برای کنترل و جداسازی کیفی گوجه‌فرنگی گیلاسی در دو حالت با و بدون پوشش ژل آلوئه‌ورا بر مبنای سامانه بینایی مصنوعی می‌باشد. برای این منظور نخست خصوصیات فیزیکی‌وشیمیایی شامل اسیدیته قابل تیتر (TA)، مواد جامد محلول کل (TSS) و سفتی بافت (F) گوجه‌فرنگی‌های گیلاسی در هر دو حالت اندازه‌گیری گردید. براساس این خصوصیات شاخص رسیدگی (RPI) تعیین گردید و نمونه‌ها بر اساس مرحله رسیدگی به دو درجه کیفی MS1 و MS2 طبقه‌بندی شدند. در ادامه با کمک سامانه بینایی مصنوعی با استفاده از دو سیستم تجزیه و تحلیل مولفه‌های اصلی (PCA)، شبکه عصبی مصنوعی پس انتشار (BPNN) و با کمک خصیصه‌های رنگی و بافتی حاصل از تصویر به‌صورت مجزا و با هم، نمونه‌ها طبقه‌بندی گردید. نتایج طبقه‌بندی نشان داد که استفاده از خصیصه‌های رنگی و بافتی باهم سبب طبقه‌بندی با صحت بیشتر می‌گردد. در این میان با کمک 21 خصیصه رنگی و بافتی روش‌های PCA و BPNN قادر به جداسازی نمونه‌‌ها به ترتیب با دقت 72/85 و 21/98 بودند. صحت بالاتر روش BPNN به سبب عملکرد غیر خطی آن است. نتایج به‌دست آمده از این پژوهش حاکی از آن است که ژل آلوئه‌ورا در به تاخیر انداختن فرایند رسیدن گوجه‌های گیلاسی به‌طور موفقیت آمیزی عمل می‌نماید و می‌توان از سامانه بینایی مصنوعی به‌عنوان یک روش غیرمخرب برای ارزیابی میزان رسیدگی گوجه‌فرنگی گیلاسی براساس خصیصه‌های رنگی و بافتی به‌طور کارآمد استفاده کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Ripening Stages Control of Cherry Tomato Coated with Aloe Vera Gel using Artificial Vision System

نویسندگان English

Ali Ganjloo 1
Mohsen Zandi 1
Mandana Bimakr 1
Samaneh Monajem 2
1 Department of Food Science and Engineering, University of Zanjan
2 MSc Student of Food Technology,Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
چکیده English

It is important to control the ripening stages of agricultural products during storage and their quality grading based on their ripening stage. Edible coatings can prolong the storage life of agricultural products and protect them through the handling, storage, processing and marketing. The purpose of the current study was to develop an artificial vision system for quality control and segregation of cherry tomatoes in two different conditions including with and without Aloe vera gel coating. For this purpose, physicochemical properties including titrable acidity, total soluble solids and firmness of cherry tomatoes were measured in both conditions. Based on these properties, the ripening index (RPI) was determined and the samples were classified to MS1 and MS2 according to the ripening stage. Subsequently, the samples were classified using color features, color texture features separately and their combination through principal component analysis (PCA) and back propagation neural network (BPNN). Classification results showed that the use of color and color texture features combination made the classification more accurate; PCA and BPNN methods were able to segregate the samples with high accuracy (85.72 and 98.21, respectively) using the 21 color and color texture features. The higher accuracy of the BPNN method is due to its nonlinear performance. The results of this study indicate that Aloe vera gel is promising in delaying the ripening process of cherry tomatoes and artificial vision system can be used as a non-destructive method for evaluation of cherry tomato ripening level based on the color and color texture features.

کلیدواژه‌ها English

Cherry tomato
Degree of maturity
Image processing
Multivariate analysis
Back propagation artificial neural network
[1] Magwaza, L.S. and U.L. Opara, 2015, Analytical methods for determination of sugars and sweetness of horticultural products: a review. Scientia Horticulture, 184: 179-192.
[2] Vasquez-Caicedo, A. L., P., Sruamsiri, R., Carle, and S., Neidhart, 2005, Accumulation of all-trans-ß-carotene and its 9-cis and 13-cis stereoisomers during postharvest ripening of nine Thai mango cultivars. Journal of Agricultural and Food Chemistry, 53: 4827-4835.
[3] Wan, P., A., Toudeshki, H., Tan, and R., Ehsani, 2018, A methodology for fresh tomato maturity detection using computer vision. Computers and Electronics in Agriculture, 146: 43-50.
[4] Pereira, L. F. S., S., Barbon Jr., N. A., Valous, and D. F., Barbin, 2018, Predicting the ripening of papaya fruit with digital imaging and random forests. Computers and Electronics in Agriculture, 145: 76-82.
[5] Rizzolo, A., M., Vanoli, L., Spinelli, and A., Torricelli, 2010, Sensory characteristics, quality and optical properties measured by time-resolved reflectance spectroscopy in stored apples. Postharvest Biology and Technology, 58(1): 1-12.
[6] Bhowmik, D., K.P.S., Kumar, S., Paswan, and S., Srivastava, 2012, Tomato-a natural medicine and its health benefits. Journal of Pharmacognosy and Phytochemistry, 1: 33-43.
[7] Chang, C.H., H.Y., Lin, C.Y., Chang, and Y.C., Liu, 2006, Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. Journal of Food Engineering, 77: 478-485.
[8] FAOSTAT, Food and Agriculture Organization (FAO), Statistics, 2017 Ed. http://www.fao.org/faostat/en. 2017.
[9] Van de Poel, B., I., Bulens, M.L.A.T.M., Hertog, L., Van Gastel, M.P., De Proft, B.M., Nicolai, and A.H., Geeraerd, 2012, Model-based classification of tomato fruit development and ripening related to physiological maturity. Postharvest Biology and Technology, 67: 59-67.
[10] Rodriguez Rodriguez, E., J., Darias Martin, and C. Diaz Romero, 2010, Aloe vera as a Functional Ingredient in Foods. Critical Reviews in Food Science and Nutrition, 50: 305-326.
[11] Xiao, Q., W. Niu, and H. Zhang. 2015, Predicting fruit maturity stage dynamically based on fuzzy recognition and color feature. In: 6th IEEE International Conference on Software Engineering and Service Science (ICSESS). IEEE, 944-948.
[12] Bhatt, A.K., and D. Pant, Automatic apple grading model development based on back propagation neural network and machine vision, and its performance evaluation. AI & Society, 2015, 30: p. 45-56.
[13] Li, C., Q., Cao, and F. Guo, 2009, A method for color classification of fruits based on machine vision. SEAS Transactions on Systems, 8: 312-321.
[14] Cardenas-Perez, S., J., Chanona-Perez, J. V., Mendez-Mendez, G., Calderon-Dominguez, R., Lopez-Santiago, M. J., Perea-Flores, and I., Arzate-Vazquez, 2017, Evaluation of the ripening stages of apple (Golden Delicious) by means of computer vision system. Biosystems Engineering, 159: 46-58.
[15] Nagle, M., K., Intani, G., Romano, B., Mahayothee, V., Sardsud, and J., Müller, 2016, Determination of surface color of all yellow mango cultivars using computer vision. International Journal of Agricultural and Biological Engineering, 9: 42 -50.
[16] Guoxiang, S., L., Yongbo, W., Xiaochan, H., Guyue, W., Xuan, and Z., Yu, 2016, Image segmentation algorithm for greenhouse cucumber canopy under various natural lighting conditions International Journal of Agricultural and Biological Engineering, 9: 130-138.
[17] Nyalala, I., C., Okinda, L., Nyalala, N., Makange, Q., Chao, K., Yousaf, and K., Chen, 2019, Tomato volume and mass estimation using computer vision and machine learning algorithms: Cherry tomato model. Journal of Food Engineering, 263: 288-298.
[18] Valverde, J.M., D., Valero, D., Martinez-Romero, F., Guillen, S., Castillo, and M., Serrano, 2005, Novel coating based on Aloe vera gel to maintain table grape quality and safety. Journal of Agricultural and Food Chemistry, 53: 7807-7813.
[19] Costa, A.Z.da., H.E.H., Figueroa, and J. A., Fracarolli, 2020, Computer vision based detection of external defects on tomatoes using deep learning. Biosystems Engineering, 190: 131-144.
[20] Arakeri, M.P., and Lakshmana, 2016, Computer vision based fruit grading system for quality evaluation of tomato in agriculture industry. Procedia Computer Science, 79: 426-433.
[21] Ireri, D., E., Belal, C., Okinda, N., Makange, and C., Ji, 2019, A computer vision system for defect discrimination and grading in tomatoes using machine learning and image processing. Artificial Intelligence in Agriculture, 2: 28-37.
[22] Wen, T., L., Zheng, S., Dong, Z., Gong, M., Sang, X., Long, M., Luo, and H., Peng, 2019, Rapid detection and classification of citrus fruits infestation by Bactrocera dorsalis (Hendel) based on electronic nose. Postharvest Biology and Technology, 147: 156-165.
[23] Kaur, S., A., Girdhar, and J., Gi, 2018, Computer vision-based tomato grading and sorting. Advances in Data and Information Sciences, 38: 75-84.
[24] Emamifar, A., 2015, Evaluation of Aloe vera gel effect as an edible coating on microbial, physicochemical and sensorial characteristics of fresh strawberry during storage. Innovative Food Technologies, 2(2): 15-29.
[25] Hazrati, S., A., Beyraghdar Kashkooli, F., Habibzadeh, Z., Tahmasebi-Sarvestani, and A.R., Sadeghi, 2017, Evaluation of Aloe vera gel as an alternative edible coating for peach fruits during cold storage period. Gesunde Pflanzen, 69: 131-137.
[26] Obledo-Vazquez, E.N. and J. Cervantes-Martínez, 2017, Quality, bioactive compounds and antioxidant capacity of selected climacteric fruits with relation to their maturity. Scientia Horticulture, 221: 33-42.
[27] Rutkowski, K.P., B. Michalczuk, and P., Konopacki, 2008, Nondestructive determination of ‘Golden Delicious’ apple quality and harvest maturity. Journal of Fruit and Ornamental Plant Research, 16: 39-52.
[28] Breda, C. A., D., Lury Morgado, B., Garrido de Assiso, and M. C., Teixeira Duarte, 2017, Effect of chitosan coating enriched with pequi (Caryocar brasiliense Camb.) peel extract on quality and safety of tomatoes (Lycopersicon esculentum Mill.) during storage. Journal of Food Processing and Preservation, 1-8.
[29] Defilippi, B.G., T. Ejsmentewicz, and M.P., Covarrubias, 2018, Changes in cell wall pectins and their relation to postharvest mesocarp softening of ‘Hass’ avocados (Persea americana Mill.). Plant Physiology and Biochemistry, 128: 142-151.
[30] Sierra, N.M., A., Londono, J.M., Gomez, A.O., Herrera, and D.A., Castellanos, 2019, Evaluation and modeling of changes in shelf life, firmness and color of ‘Hass’ avocado depending on storage temperature. Food Science and Technology International, 1–15.
[31] Lin, W.C., 2003, Quality of stored greenhouse sweet peppers influenced by storage temperatures and pre-harvest factors. Journal of Postharvest Technology, 5: 12-16.
[32] Mohebbi, M., N., Hasanpour, E., Ansarifar, and M. R., Amiryousefi, 2012, Physicochemical properties of bell pepper and kinetics of its color change influenced by aloe vera and gum tragacanth coatings during storage at different temperatures. Journal of Food Processing and Preservation, 1-10.