[1] Oh, I., Lee, J., Gyu, H., & Lee, S. (2019). Feasibility of hydroxypropyl methylcellulose oleogel as an animal fat replacer for meat patties. Food Research International. 122: 566–572.
[2] Saghafi, Z., Naeli, M. H., Tabibiazar, M., & Zargaraan, A. (2019). Modeling the Rheological Behavior of Chemically Interesterified Blends of Palm Stearin/Canola Oil as a Function of Physicochemical Properties. Journal of the American Oil Chemists' Society. https://doi.org/10.1002/aocs.12272
[3] Diem, C., Tavernier, I., Kiyomi, P., & Dewettinck, K. (2018). Internal and external factors a ff ecting the crystallization, gelation and applicability of wax-based oleogels in food industry. Innovative Food Science and Emerging Technologies. 45: 42–52.
[4] Meng, Z., Qi, K., Guo, Y., Wang, Y., & Liu, Y. (2018a). Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose. Food Chemistry. 246: 137–149.
[5] Gaudino, N., Mirzaee, S., Clark, S., & Marangoni, A. G. (2019). Development of lecithin and stearic acid based oleogels and oleogel emulsions for edible semisolid applications. Food Research International. 116: 79–89.
[6] Lim, J., Jeong, S., Oh, I. K., & Lee, S. (2017). Evaluation of soybean oil-carnauba wax oleogels as an alternative to high saturated fat frying media for instant fried noodles. LWT - Food Science and Technology. 84: 788–794.
[7] Limpimwong, W., Kumrungsee, T., Kato, N., & Yanaka, N. (2017). Rice bran wax oleogel : A potential margarine replacement and its digestibility e ff ect in rats fed a high-fat diet. Journal of Functional Foods. 39: 250–256.
[8] Moghtadaei, M., Amir, S., & Goli, H. (2018). Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Research International. 108: 368–377.
[9] Wijarnprecha, K., Vries, A. de, Santiwattana, P., Sonwai, S., & Rousseaub, D. (2019). Microstructure and rheology of oleogel-stabilized water-in-oil emulsions containing crystal-stabilized droplets as active fillers. LWT - Food Science and Technology. 115: 108058.
[10] Jang, A., Bae, W., Hwang, H., Gyu, H., & Lee, S. (2015). Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods. Food chemistry, 187, 525–529.
[11] Andréa, C., Freitas, S. De, Henrique, P., Sousa, M. De, Soares, D. J., Ytalo, J., Guedes, F. (2019). Carnauba wax uses in food – A review. Food Chemistry. 291: 38–48.
[12] Öğütcü, M., Arifoğlu, N., & Yılmaz, E. (2015b). Storage stability of cod liver oil organogels formed with beeswax and carnauba wax. International Journal of Food Science & Technology. 50(2): 404–412.
[13] Pehlivanoglu, H., Ozulku, G., Yildirim, R. M., Demirci, M., Toker, O. S., & Sagdic, O. (2018). Investigating the usage of unsaturated fatty acid-rich and low- calorie oleogels as a shortening mimetics in cake. Journal of Food Processing and Preservation. 42(6): e13621.
[14] Kim, J. Y., Lim, J., Lee, J., Hwang, H., & Lee, S. (2017). Utilization of Oleogels as a Replacement for Solid Fat in Aerated Baked Goods: Physicochemical, Rheological, and Tomographic Characterization. Journal of Food Science. 82(2): 445–452.
[15] Fayaz, G., Amir, S., Goli, H., Kadivar, M., Valoppi, F., Barba, L., Cristina, M. (2017). Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread. LWT - Food Science and Technology. 86: 523–529.
[16] Pérez-Monterroza, E. J., Márquez-Cardozo, C. J., & Ciro-Velásquez, H. J. (2014). Rheological behavior of avocado (Persea americana Mill, cv. Hass) oleogels considering the combined effect of structuring agents. LWT - Food Science and Technology. 59(2): 673–679.
[17] Wohlgemuth, K., Ruether, F., & Schembecker, G. (2010). Sonocrystallization and crystallization with gassing of adipic acid. Chemical Engineering Science. 65(2): 1016–1027.
[18] Falamarzpour, P., Behzad, T., & Zamani, A. (2017). Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid. International Journal of Molecular Sciences. 18(2): 396.
[19] Raja, R., Vedhavalli, D., Nathan, P. K., & Patra, S. (2017). Growth and Characterization of Adipic Acid Doped Single Crystal. Int J Cur Res Rev. 9(10): 95–98.
[20] AACC. 2000. Approved Methods of the American Association of Cereal Chemists, 10th Ed., Vol. 2. American Association of Cereal Chemists, St. Paul, MN.
[21] Haralick, R.M., Shanmugam, K., and Dinstein, I. (1973). Textural features for image classification. IEEE Transactions of ASAE. 45 (6): 1995-2005.
[22] Zhang, K., Wang, W., Wang, X., Cheng, S., Zhou, J., Wu, Z., & Li, Y. (2019). Fabrication, physicochemical and antibacterial properties of ethyl cellulose-structured cinnamon oil oleogel: a relation of ethyl cellulose viscosity and oleogel performance Running title: The performance of ethyl cellulose-structured cinnamon oil oleo. Journal of the Science of Food and Agriculture. 99(8): 4063–4071.
[23] Amjadi, S., Emaminia, S., Nazari, M., Davudian, S. H., Roufegarinejad, L., & Hamishehkar, H. (2019). Application of Reinforced ZnO Nanoparticle-Incorporated Gelatin Bionanocomposite Film with Chitosan Nanofiber for Packaging of Chicken Fillet and Cheese as Food Models. Food and Bioprocess Technology. 12(7): 1205–1219.
[24] Mert, B., & Demirkesen, I. (2016). Reducing saturated fat with oleogel / shortening blends in a baked product. Food Chemistry. 199: 809–816.
[26] Demirkesen, I., & Mert, B. (2019). Utilization of Beeswax Oleogel-Shortening Mixtures in Gluten- Free Bakery Products. Journal of the American Oil Chemists’ Society. 96(5): 545–554.
[27] Oh, I., Lee, J., Gyu, H., & Lee, S. (2019). Feasibility of hydroxypropyl methylcellulose oleogel as an animal fat replacer for meat patties. Food Research International. 122: 566–572.
[28] Oh, I. K., Amoah, C., Lim, J., Jeong, S., & Lee, S. (2017). Assessing the effectiveness of wax-based sun fl ower oil oleogels in cakes as a shortening replacer. LWT - Food Science and Technology, 86, 430–437.