بهینه‌سازی فرایند شفاف سازی آب گوجه‌فرنگی به وسیله پکتیناز تجاری تثبیت شده با روش سطح پاسخ

نویسندگان
1 گروه علوم و مهندسی صنایع غذایی، دانشکده داروسازی، دانشگاه علوم پزشکی آزاد اسلامی تهران، ایران.
2 گروه صنایع غذایی، دانشکده علوم زیستی، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران، ایران
3 باشگاه پژوهشگران جوان و نخبگان دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران (دکتری صنایع غذایی)
چکیده
آنزیم پکتیناز اهمیت زیادی در صنایع غذایی دارد. توانایی تجزیه پکتین، عامل اصلی کدورت آب میوه‌ها را دارد. به همین دلیل در شفاف‌سازی و توانایی حفظ خواص حسی و کیفیت مواد مغذی نقش مهمی را ایفا می‌کند. استفاده از آنزیم‌ها در صنعت‌ هزینه بر است و باید تدابیری اندیشیده شود تا بتوان از مقدار کمی آنزیم بدون تغییردر میزان کارایی آن، برای چندین بار متوالی استفاده شود. در این پژوهش آنزیم پکتیناز تجاری درون دانه­های آلژینات تثبیت، وفعالیت آنزیم آزاد و تثبیت­شده تحت شرایط دما و pH مختلف مورد بررسی قرار گرفت. بهترین دما و بهترین pH برای آنزیم آزاد وتثبیت شده به ترتیب °C 45 و 3 تعیین گردید. روش سطح­ پاسخ جهت بهینه‌سازی شفاف‌سازی آب گوجه‌فرنگی با استفاده از 3 متغیر غلظت آنزیم تثبیت شده در محدوده (2-6%)، دما (°C30-45) و زمان (15- 45 دقیقه) در 3 سطح مورد استفاده قرار گرفت. آنالیز آماری و بهینه­سازی در جهت دستیابی به کمترین کدورت آب‌گوجه‌فرنگی در کمترین میزان آنزیم مصرفی انجام شد. نتایج نشان داد شرایط بهینه غلظت آنزیم تثبیت­شده، دما و زمان جهت رسیدن به 09/27 برابر بازده شفاف‌سازی به ترتیب 2% ، °C 45 و 45 دقیقه با تعیین گردید.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimizing of Tomato Juice Clarification Process by Immobilized Commercial Pectinase Using Response Surface Methodology

نویسندگان English

Atefeh Abdollahzade 1
Zahra Beigmohammadi 2
Mahdieh Ghamari 3
1 Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, IslamicAzad University, Tehran, Iran.
2 Department of Food Science and Technology, Faculty of Biological Sciences, Islamic Azad University, Tehran North Branch. Tehran, Iran
3 Young Researchers and Elites club, Islamic Azad University, Science and Research Branch, Tehran, Iran
چکیده English

The pectinase enzyme has a great importance in the food industry. It is capable of decomposing Pectin significantly, which is the substantial element of turbidity of the juices. As a result, it plays an important role in clarification also ability to maintain organoleptic properties and quality of nutrients. The usage of enzymes in the industry is costly and some measures should be taken to allow the enzyme to be used several times without altering its efficiency. In this research the commercial pectinase enzyme was immobilized on calcium alginate beads. Free and immobilized enzymes activities in different temperatures and pH were determined. Then storage stability and reusability of enzyme were investigated. For optimized clarification of tomato juice by immobilized enzyme, the response surface methodology was used. Three factors including temperature (30-45°C), time (15-45 min) and enzyme concentration (2-6%) in 3 levels were used to evaluate the effect of parameters on turbidity of tomato juice as a model system, the importance of interacting the effects of factors also determined. Optimization has been conducted to achieve the lowest turbidity of tomato juice at the lowest used enzyme. Optimized conditions achieved by concentration of immobilized enzyme 2%, temperature 45C and time 45min, and with yield of clarification 27/09 times for tomato juice. Results showed that the best temperature and pH for free and immobilized enzymes were 45°C and 3, respectively.




کلیدواژه‌ها English

Pectinase
Clarification
Tomato juice
response surface methodology
Optimization
[1] Hiteshi K, Chauhan S, Gupta R. 2013. Immobilization of microbial pectinases: A Review, CIBTech Journal of Biotechnology, 2: 2319-3859.
[2] Rajdeo K, Harini T, Lavanya K, Fadnavis N. W. 2016. Immobilization of pectinase on reusable polymer support for clarification of apple juice. Food and Bioproducts Processing, 1-28.
[3] Tapre A. R, Jain R. K . 2014. pectinase: Enzymes for fruit processing industry. International Food Resesrch Journal, 21: 447-453.
[4] Yanzhen M, Yuru CH, Ruying ZH, Yang L. 2013. Cloning,purification and biochemical properties of a thermostable pectinase form Bacillus halodurans M29. Journal of molecular Catalysis B: Enzymeatic, 94: 77-81.
[5] Bahrami A, Hejazi P. 2013. Electrostatic immobilization of pectinase on negatively charged AOT Fe3O4 nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 93: 1-7.
[6] Faraji M and Fadavi Gh. 2013. Applications of magnetic nanoparticles in the food science. Iranian Journal of Nutrition and Food Science, 2: 239-252.
[7] Ur Rehman H, Aman A, Silipo A, Ul Qader SH. A, Molinaro A, Ansari A. 2013. Degradation of complex carbohydrate: Immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 using calcium alginate as a support. Food Chemistry, 139: 1081-1086.
[8] Razi B, Aroujalian A, Raisi A, Fathizadeh M. 2011. Clarification of tomato juice by cross-flow microfiltration. International Journal of Food Science & Technology, 46: 138-145.
[9] Lee W. C, Yusof S, Hamid N.S.A, & Baharin, B.S. 2006. Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). Journal of Food Engineering, 73: 55–63.
[10] Baumann J.W. Application of enzymes in fruit juice technology. 1981. In: Enzymes and Food Processing (edited by G.G. Birch N. Blakebrough & K.J. Parker). London: Applied Science
Publishers Ltd. Pp, 129–147.
[11] Sheryl A, Lazarus and Manohar, Garg L. 2006. Clarified Tomato Juice Inhibits Platelet Aggregation, University of Newcastle, 225-228.
[12] Ghavipour M, Saedisomeolia A, Djalali M, Sotoudeh G, Eshraghyan M. R, Malekshahi Moghadam A, Wood G. L. 2013. Tomato juice consumption reduces systemic inflammation in overweight and obese females, British Journal of Nutrition, 109: 2031–2035.
[13] Silasti M. L, Alfthan G, Aro A, Kesaniemi A, Horkko S. 2007. Tomato juice decreases LDL cholesterol levels and increases LDL resistance to oxidation, British Journal of Nutrition, 98: 1251–1258.
[14] Doreen H, Sirma, Y, Canan T, Marcelo F L. 2012. pectinase enzyme-complex production by Aspergillus spp. in solid-state Fermentation: A comparative study. Food and Bioproducts progessing, 90: 102-110.
[15] Alagoz D, Seyhan Tukel S, Yildirim D. 2016. Immobilization of pectinase on silica-based supports: Impacts of particle size and spacer arm on the activity, International Journal of Biological Macromolecules, 87: 426-432.
[16] Beig mohammadi Z, Hamidi Esfahani Z, Sahari M L, Khosravi Darani K. 2016. Optimization of Phospholipase A1 Immobilization on Plasma Surface Modified Chitosan Nanofibrous Mat, Applied Food Biotechnology, 3(1):27-37.
[17] Mosafa L. 2013 Immobilization of two pectinase and papain enzymes on magnetic nanoparticles and their effect on juice clarity. Ph.D. thesis, Isfahan University of Technology, Department of Food Science and Technology.
[18] Cerreti M, Liburdi K, Benucci I, Emiliani Spinelli S, Lombardelli C, Esti M. 2017. Optimization of pectinase and protease clarification treatment of pomegranate juice, LWT - Food Science and Technology, 82: 58-65.
[19] Nagar S, Mittal A, Gupta V. K. 2012. Enzymatic Clarification of Fruit Juices (Apple, Pineapple, and Tomato) Using Purified Bacillus pumilus SV-85S Xylanase, Biotechnology and Bioprocess Engineering, 17: 1165-1175.
[20] Barrman S, Sit N, Badwaik S. L, Deka C. S. 2014. Pectinase production by Aspergillus niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice, J Food Sci Technol, 1-11.
[21] Ghamari M. 2015. Optimization of production and extraction of lipase from Aspergillus niger strain using palm fruit waste and its Immobilization for application in food industry, Ph.D. thesis, Mashhad Ferdowsi University.
[22] Quiroga E, Illanes C. O, Ochoa N. A and Barberis S. 2011. Performance improvement araurjain, a cystein phytoprotease, by immobilization within calcium alginate beads, Process Biochemistry,46: 1029–1034.
[23] Alkorta I, Garbisu C, Liama M. J, Serra J. L. 1996. Immobilization of pectin lyase from Penicillium italicum by covalent binding to nylon, Enzyme and Microbial Technology,18:141-146.
[24] Ur Rehman H, Aman A, Asif Nawaz M, Baloch A. H, Ul Qader SH. A. 2014. Immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 on chitosan beads for continuos degradation of pectin polymers, Biocatalysis and Agricultural Biotechnology,3: 282-287
.
[25] Ur Rehman H, Aman A, Asif Nawaz M, Karim A, Ghani M, Baloch A. H, Ghader Sh. A. 2015. Immobilization of pectin depolymerising polygalacturonase using different polymers, International Journal of Biological Macromolecules, 1-7.

[26] Ghamari M, Tabatabaei Yazdi F, Alamzadeh E, Vosoughi M, Varidi M, Safari H. 2017. Optimization of the culture medium containing palm sap for the production of lipase by Aspergillus niger in response surface method, Food Science,65(14): 85-96.