[1] Heydari-Majd, M., Ghanbarzadeh, B., Shahidi-Noghabi, M., and Najafi, M. A. (2019). A new active nanocomposite film based on PLA/ZnO nanoparticle/essential oils for the preservation of refrigerated Otolithes ruber fillets. Food Packaging and Shelf Life. 19: 94-103.
[2] Salarbashi, D., Tajik, S., Shojaee-Aliabadi, S., Ghasemlou, M., Moayyed, H., Khaksar, R., and Noghabi, M. S. (2014). Development of new active packaging film made from a soluble soybean polysaccharide incorporated Zataria multiflora Boiss and Mentha pulegium essential oils. Food Chemistry. 146: 614-622.
[3] Akhilesh, V., and Singh, K. (2012). Synthesis and evaluation of physicochemical properties of cross-linked sago starch. International Journal of Biological Macromolecules. 50:14-18.
[4] Bhattarai, J. P., Park, S., and Han, S. (2010). The methanolic extract of Withania somnifera ACTS on GABAA receptors in gonadotropin releasing hormone (GnRH) neurons in mice. Phytotherapy research. 24(8): 1147-1150.
[5] Kulkarni, S. K., and Dhir, A. (2008). Withania somnifera: an Indian ginseng. Prog Neuropsychopharmacol Biol Psychiatry. 32: 1093-105.
[6] Arora, A., and Padua, G. (2010). Nanocomposites in food packaging. Journal of Food science. 75(1): 43-49.
[7] Owais, M., Sharad, K. S., Shehbaz, A., and Saleemuddin, M. (2005). Antibacterial efficacy of Withania somnifera (ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis. Phytomedicine. 12(3): 229-235.
[8] Hakim, H., Fazlara, A., and Tadayoni, M. (2018). Effect of chitosan coating containing oregano essential oil on shelf life of chicken fillets during refrigerated storage. Journal of Food Science and Technology. 57(15).
[9] Majd, M. H., Rajaei, A., Bashi, D. S., Mortazavi, S. A., and Bolourian, Shadi. (2014). Optimization of ultrasonic-assisted extraction of phenolic compounds from bovine pennyroyal (Phlomidoschema parviflorum) leaves using response surface methodology. Industrial Crups and Products. 57: 195-202.
[10] Karimkhani, M., Shaddel, R., Khodaparast, M., Vazirian, M., and Piri-Gheshlaghi, S. (2016). Antioxidant and antibacterial activity of safflower (Carthamus tinctorius L.) extract from four different cultivars. Quality Assurance and Safety of Crops and Foods, 8(4): 565-574.
[11] Javidi, Z., Hosseini, S. F., and Rezaei, M. (2016). Development of flexible bactericidal films based on poly (lactic acid) and essential oil and its effectiveness to reduce microbial growth of refrigerated rainbow trout. LWT - Food Science and Technology. 72: 251-260.
[12] Safari, M. H., and Mohammadi, N. A. (2013). Investigation of the effects of rosemary extract on barrier and colorimetric properties of Mungbean starch films. J of Chemical Health Risks. 3(2):47-52.
[13] ASTM, Standard test methods for water vapor transmission of materials. Annual Book of ASTM Standards, 08.01 (E96-95),. American Society for Testing and Materials: Philadelphia, PA., 1994: p. 65-70.
[14] ASTM. (2005). Standard test methods for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor D 3985-05. Annual Book of ASTM Standards. Philadelphia, PA.
[15] ASTM, Standard test method for tensile properties of thin plastic sheeting (D882-02). In Annual book of ASTM standards. Philadelphia, PA: American Society for Testing Materials, 2002.
[16] Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology. 94(3): 223-253.
[17] Hemmatkhah, F., Zeynali, F., and Almasi, H. (2020). Encapsulated cumin seed essential oil-loaded active papers: characterization and evaluation of the effect on quality attributes of beef Hamburger. food and bioprocess technology. 13: 533-547.
[18] Campos, C. A., Gerschenson, L., and Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology. 4(6): 849-875.
[19] Rojhan, M., and Nouri, L. (2018). Antimicrobial, Physicochemical, Mechanical, and Barrier Properties of Tapioca Starch Films Incorporated with Eucalyptus Extract. Journal of Chemical Health Risks. 3(3).
[20] Sukhtezari, S. h., Almasi, H., Pirsa, S., Zandi, M., and Pirouzifard, M. kh. (2018). Investigation of the physical and antioxidant properties of bacterial cellulose active film containing Scrophularia striata extract. Journal of Food Reaserch. 27(2): 51-62.
[21] Sondari, D., Triwulandari, E., Ghozali, M., Sampora, Y., Iltizam, I., and Masruchin, N. (2018). The effect of oxidation on sago starch and its application as edible film. Journal Sains Materi Indonesia. 20(1): 1-7.
[22] Jaramillo, M. C., González Seligra, P., Goyanes, S., Bernal, C., and Famá, L. (2015). Biofilms based on cassava starch containing extract of yerba mate as antioxidant and plasticizer. Starch‐Stärke. 67(9-10): 780-789.
[23] Hosseini, M., Razavi, S. H., and Mousavi, M. A. (2009). Antimicrobial, physical and mechanical properties of chitosan‐based films incorporated with thyme, clove and cinnamon essential oils. Journal of food processing and preservation. 33(6): 727-743.
[24] Nouri, L., and Nafchi, A. M. (2014). Antibacterial, mechanical, and barrier properties of sago starch film incorporated with betel leaves extract. International Journal of Biological Macromolecules. 66: 254-259.
[25] Siripatrawan, U., and Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids. 24(8): 770-775.
[26] Balti, R., Mansour, M. B., Sayari, S., Yacoubi, L., Rabaoui, L., Brodu, N., Massé, A. (2017). Development and characterization of bioactive edible films from spider crab (Maja crispata) chitosan incorporated with Spirulina extract. International Journal of Biological Macromolecules. 105(2): 1464-1472.
[27] Shahbazi, Y. (2017). The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. Int J Biol Macromol. 99: 746-753.
[28] Bonilla, J., Vargas, M., Atarés, L., and Chiralt, A. (2011). Physical properties of chitosan-basil essential oil edible films as affected by oil content and homogenization conditions. Procedia Food Science. 1: 50-56.
[29] Moradi, M., Tajik, H., Razavi Rohani, S. M., Oromiehie, A. R., Malekinejad, H., Aliakbarlu, J., and Hadian, M. (2012). Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT - Food Science and Technology. 46(2): 477-484.
[30] Curcio, M., Puoci, F., Iemma, F., Parisi, O. I., Cirillo, G., Spizzirri, U. G., and Picci, N. (2009). Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. Journal Agriculture Food Chemistry. 57(13):5933-5838.
[31] Abdollahi, M., Rezaei, M., and Farzi, G. (2012). A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. Journal of Food Engineering. 111(2): 343-350.
[32] Liu, Y., Liang, X., Wang, S., Qin, W., and Zhang, Q. (2018). Electrospun Antimicrobial Polylactic Acid/Tea Polyphenol Nanofibers for Food-Packaging Applications. Polymers. 10(5): 561.
[33] Heydari-Majd, M., Rezaeinia, H., Shadan, M. R., Ghorani, B., and Tucker, N. (2019). Enrichment of zein nanofibre assemblies for therapeutic delivery of Barije (Ferula gummosa Boiss) essential oil. Journal of Drug Delivery Science and Technology. 45:101290.