تهیه و بررسی اثر عصاره پنیرباد بر خواص فیزیکوشیمیایی، مکانیکی و ضدمیکروبی فیلم خوراکی نشاسته ساگو

نویسندگان
گروه علوم و صنایع غذایی، واحد بم، دانشگاه آزاد اسلامی، بم، ایران
چکیده
امروزه مطالعات متعددی به منظور توسعه بیوپلیمرهای جدید از منابع زیست تجزیه­ پذیر در حال انجام است. در این پژوهش، فیلم بسته­ بندی فعال بر پایه نشاسته­ ساگو حاوی غلظت­ های مختلف (1، 5/1 و 2 برابر حداقل غلظت ممانعت کننده رشد) عصاره پنیرباد تهیه گردید. حداقل غلظت ممانعت کننده رشد و حداکثر غلظت باکتری­کشی عصاره­ ها ارزیابی شد. ویژگی­ های فیزیکوشیمیایی (مانند ضخامت، ظرفیت جذب آب، حلالیت در آب، نفوذپذیری به بخار آب، نفوذپذیری به اکسیژن و زاویه تماس)، مکانیکی (مقاومت کششی، ازدیاد طول تا نقطه شکست و مدول الاستیسیته) و آنتی­ اکسیدانی فیلم مورد ارزیابی قرار گرفت. همچنین فعالیت ضدمیکروبی فیلم بر روی دو باکتری پاتوژن اشریشیاکلی و استافیلوکوکوس ارئوس توسط آزمون دیسک بررسی شد. نتایج نشان داد که افزایش غلظت عصاره پنیرباد سبب افزایش معنی­ دار (p<0.05) بر روی ضخامت، حلالیت در آب، نفوذپذیری به بخار آب، نفوذپذیری به اکسیژن و زاویه تماس فیلم گردید اما اثری بر ظرفیت جذب آب نداشت. عصاره پنیرباد سبب جذب نور در منطقه مرئی شد که این امر منجر به افزایش پارامترهای رنگی a* و b* شد اما شاخص L* کاهش یافت. افزایش در محتوای عصاره به دلیل اثر پلاستی­ سایزری سبب کاهش مقاومت کششی و مدول یانگ و در سوی مقابل سبب افزایش میزان ازدیاد طول تا نقطه شکست گردید. فیلم ساگو حاوی غلظت­ های بالای عصاره پنیرباد بر روی مهار رشد هر دوگونه باکتری تاثیر موفق داشت و تاثیر آن بر باکتری گرم مثبت بیشتر بود. همچنین فیلم ساگو حاوی عصاره پنیرباد، فعالیت مهار رادیکال DPPH خوبی را نشان داد. این نتایج بیانگر آن بود که فیلم فعال نشاسته ساگو حاوی عصاره پنیرباد می­تواند کاربردهای بسته­ بندی غذایی مختلفی داشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Preparation and investigation of Withania Somnifera extracts on physicochemical, antimicrobial, and mechanical properties of edible films based on sago starch

نویسندگان English

Shrareh Lashkari zadeh bami
hamid sarhadi
Abdolvahed Safarzaei
Department of Food Science & Technology, Bam Branch, Islamic Azad University, Bam, Iran
چکیده English

Nowadays, extensive investigations have been conducted on developing novel biopolymers from biodegradable sources. In the current study, the active packaging film based on sago starch-containing varying concentrations (1, 1.5 and 2 MIC) of Withania Somnifera L. extract were produced. The Minimal Inhibitory Concentration (MIC) and Minimal Bactericide Concentration (MBC) of extract were measured. Physicochemical (such as thickness, water absorption capacity (WAC), water solubility (WS), water vapor permeability, Oxygen Permeability (OP) and contact angle (CA)), mechanical (tensile strength, elongation to break and modulus of elasticity) and antioxidant properties of the films were evaluated. The antibacterial activity of the films also was tested against two common food-borne pathogens (Escherichia coli, and Staphylococcus aureus) by the disc diffusion method. The results showed that increasing concentrations of Withania Somnifera L. extract have a significant effect (p <0.05) to increase the amount of thickness, WS, water vapor permeability, OP, and CA, but was not effective on WAC. Withania Somnifera L. extract increased the absorption of color in the visible region, which in turn led to an increasing of the parameters a* (index color tends toward green) and b* (index color tends towards yellow) but reduced L*. An increase in Withania Somnifera L. extract content resulted in a plasticizing effect, reducing the tensile strength and Young’s modulus but a concurrent increase in elongation at break. Sago films containing higher percentages of Withania Somnifera L. extract were effective against all two tested bacterial strains, and these effects were more significant in the case of the gram-positive bacteria. Sago film containing extract showed a good DPPH radical scavenging activity. These results suggest that the developed sago films containing Withania Somnifera L. extract could be used in various food packaging applications.

کلیدواژه‌ها English

Edible film Physicochemical properties
Sago starch
Withania Somnifera extracts
[1] Heydari-Majd, M., Ghanbarzadeh, B., Shahidi-Noghabi, M., and Najafi, M. A. (2019). A new active nanocomposite film based on PLA/ZnO nanoparticle/essential oils for the preservation of refrigerated Otolithes ruber fillets. Food Packaging and Shelf Life. 19: 94-103.
[2] Salarbashi, D., Tajik, S., Shojaee-Aliabadi, S., Ghasemlou, M., Moayyed, H., Khaksar, R., and Noghabi, M. S. (2014). Development of new active packaging film made from a soluble soybean polysaccharide incorporated Zataria multiflora Boiss and Mentha pulegium essential oils. Food Chemistry. 146: 614-622.
[3] Akhilesh, V., and Singh, K. (2012). Synthesis and evaluation of physicochemical properties of cross-linked sago starch. International Journal of Biological Macromolecules. 50:14-18.
[4] Bhattarai, J. P., Park, S., and Han, S. (2010). The methanolic extract of Withania somnifera ACTS on GABAA receptors in gonadotropin releasing hormone (GnRH) neurons in mice. Phytotherapy research. 24(8): 1147-1150.
[5] Kulkarni, S. K., and Dhir, A. (2008). Withania somnifera: an Indian ginseng. Prog Neuropsychopharmacol Biol Psychiatry. 32: 1093-105.
[6] Arora, A., and Padua, G. (2010). Nanocomposites in food packaging. Journal of Food science. 75(1): 43-49.
[7] Owais, M., Sharad, K. S., Shehbaz, A., and Saleemuddin, M. (2005). Antibacterial efficacy of Withania somnifera (ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis. Phytomedicine. 12(3): 229-235.
[8] Hakim, H., Fazlara, A., and Tadayoni, M. (2018). Effect of chitosan coating containing oregano essential oil on shelf life of chicken fillets during refrigerated storage. Journal of Food Science and Technology. 57(15).
[9] Majd, M. H., Rajaei, A., Bashi, D. S., Mortazavi, S. A., and Bolourian, Shadi. (2014). Optimization of ultrasonic-assisted extraction of phenolic compounds from bovine pennyroyal (Phlomidoschema parviflorum) leaves using response surface methodology. Industrial Crups and Products. 57: 195-202.
[10] Karimkhani, M., Shaddel, R., Khodaparast, M., Vazirian, M., and Piri-Gheshlaghi, S. (2016). Antioxidant and antibacterial activity of safflower (Carthamus tinctorius L.) extract from four different cultivars. Quality Assurance and Safety of Crops and Foods, 8(4): 565-574.
[11] Javidi, Z., Hosseini, S. F., and Rezaei, M. (2016). Development of flexible bactericidal films based on poly (lactic acid) and essential oil and its effectiveness to reduce microbial growth of refrigerated rainbow trout. LWT - Food Science and Technology. 72: 251-260.
[12] Safari, M. H., and Mohammadi, N. A. (2013). Investigation of the effects of rosemary extract on barrier and colorimetric properties of Mungbean starch films. J of Chemical Health Risks. 3(2):47-52.
[13] ASTM, Standard test methods for water vapor transmission of materials. Annual Book of ASTM Standards, 08.01 (E96-95),. American Society for Testing and Materials: Philadelphia, PA., 1994: p. 65-70.
[14] ASTM. (2005). Standard test methods for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor D 3985-05. Annual Book of ASTM Standards. Philadelphia, PA.
[15] ASTM, Standard test method for tensile properties of thin plastic sheeting (D882-02). In Annual book of ASTM standards. Philadelphia, PA: American Society for Testing Materials, 2002.
[16] Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology. 94(3): 223-253.
[17] Hemmatkhah, F., Zeynali, F., and Almasi, H. (2020). Encapsulated cumin seed essential oil-loaded active papers: characterization and evaluation of the effect on quality attributes of beef Hamburger. food and bioprocess technology. 13: 533-547.
[18] Campos, C. A., Gerschenson, L., and Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology. 4(6): 849-875.
[19] Rojhan, M., and Nouri, L. (2018). Antimicrobial, Physicochemical, Mechanical, and Barrier Properties of Tapioca Starch Films Incorporated with Eucalyptus Extract. Journal of Chemical Health Risks. 3(3).
[20] Sukhtezari, S. h., Almasi, H., Pirsa, S., Zandi, M., and Pirouzifard, M. kh. (2018). Investigation of the physical and antioxidant properties of bacterial cellulose active film containing Scrophularia striata extract. Journal of Food Reaserch. 27(2): 51-62.
[21] Sondari, D., Triwulandari, E., Ghozali, M., Sampora, Y., Iltizam, I., and Masruchin, N. (2018). The effect of oxidation on sago starch and its application as edible film. Journal Sains Materi Indonesia. 20(1): 1-7.
[22] Jaramillo, M. C., González Seligra, P., Goyanes, S., Bernal, C., and Famá, L. (2015). Biofilms based on cassava starch containing extract of yerba mate as antioxidant and plasticizer. Starch‐Stärke. 67(9-10): 780-789.
[23] Hosseini, M., Razavi, S. H., and Mousavi, M. A. (2009). Antimicrobial, physical and mechanical properties of chitosan‐based films incorporated with thyme, clove and cinnamon essential oils. Journal of food processing and preservation. 33(6): 727-743.
[24] Nouri, L., and Nafchi, A. M. (2014). Antibacterial, mechanical, and barrier properties of sago starch film incorporated with betel leaves extract. International Journal of Biological Macromolecules. 66: 254-259.
[25] Siripatrawan, U., and Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids. 24(8): 770-775.
[26] Balti, R., Mansour, M. B., Sayari, S., Yacoubi, L., Rabaoui, L., Brodu, N., Massé, A. (2017). Development and characterization of bioactive edible films from spider crab (Maja crispata) chitosan incorporated with Spirulina extract. International Journal of Biological Macromolecules. 105(2): 1464-1472.
[27] Shahbazi, Y. (2017). The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. Int J Biol Macromol. 99: 746-753.
[28] Bonilla, J., Vargas, M., Atarés, L., and Chiralt, A. (2011). Physical properties of chitosan-basil essential oil edible films as affected by oil content and homogenization conditions. Procedia Food Science. 1: 50-56.
[29] Moradi, M., Tajik, H., Razavi Rohani, S. M., Oromiehie, A. R., Malekinejad, H., Aliakbarlu, J., and Hadian, M. (2012). Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT - Food Science and Technology. 46(2): 477-484.
[30] Curcio, M., Puoci, F., Iemma, F., Parisi, O. I., Cirillo, G., Spizzirri, U. G., and Picci, N. (2009). Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. Journal Agriculture Food Chemistry. 57(13):5933-5838.
[31] Abdollahi, M., Rezaei, M., and Farzi, G. (2012). A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. Journal of Food Engineering. 111(2): 343-350.
[32] Liu, Y., Liang, X., Wang, S., Qin, W., and Zhang, Q. (2018). Electrospun Antimicrobial Polylactic Acid/Tea Polyphenol Nanofibers for Food-Packaging Applications. Polymers. 10(5): 561.
[33] Heydari-Majd, M., Rezaeinia, H., Shadan, M. R., Ghorani, B., and Tucker, N. (2019). Enrichment of zein nanofibre assemblies for therapeutic delivery of Barije (Ferula gummosa Boiss) essential oil. Journal of Drug Delivery Science and Technology. 45:101290.