بهینه‌سازی فرایند استخراج ترکیبات زیست فعال از تفاله انگور سیاه سردشت به روش‌های فراصوت و غرقابی با استفاده از متدولوژی سطح پاسخ

نویسندگان
1 گروه عوم و صنایع غذایی، واحد سبزوار، دانشگاه آزاد اسلامی
2 استاد، گروه علوم و صنایع غذایی، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران.
3 استادیار، انستیتوی علوم و صنایع غذایی، مشهد، ایران
4 گروه مهندسی علوم و صنایع غذایی، دانشکده مهندسی، واحد قزوین، دانشگاه آزاد اسلامی
چکیده
انگور سیاه قرمز (Vitis Viniferae cv Rash) یکی از مهمترین ارقام انگور در استان آذربایجان غربی است. تفاله انگور سیاه سردشت منبع ارزان و غنی از ترکیبات زیست فعال است. در این تحقیق فرایند استخراج ترکیبات زیست فعال موجود در تفاله انگور سیاه سردشت با استفاده از دو روش غرقابی و فراصوت و بهینه سازی فرایندهای استخراج به روش سطح پاسخ انجام گرفت. جهت پیش بینی رفتار نمونه ها، مدل چند جمله ای درجه ی دوم و از طرح مربع مرکزی برای بهینه سازی شرایط استخراج به روش غرقابی و فراصوت مورد استفاده قرار گرفت، تاثیر شرایط عملیاتی (دما و زمان) بر محتوی ترکیبات فنلی، آنتو سیانین‌ها و فعالیت آنتی‌اکسیدانی با استفاده از روش سطح پاسخ ارزیابی شد. شرایط بهینه به شرح زیر بود: مدت زمان 24 ساعت و دمای 35 درجه سانتیگراد برای استخراج به روش غرقابی و مدت زمان 15 دقیقه و دمای 55 درجه سانتیگراد برای استخراج به کمک فراصوت. در این شرایط، برای استخراج به روش غرقابی میزان ترکیبات فنلی 779/96 میلی‌گرم اسید گالیک در 100 میلی‌لیتر عصاره، آنتوسیانین 345/118 میلی گرم در لیتر و فعالیت آنتی اکسیدان 4919/55 درصد و برای استخراج به کمک فراصوت، ترکیبات فنلی 115/114 میلی‌گرم اسید گالیک در 100 میلی‌لیتر عصاره، آنتوسیانین 645/121 گرم در لیتر و فعالیت آنتی اکسیدان 89/64 درصد بود. نتایج این تحقیق نشان داد که روش فراصوت نسبت به غرقابی روش بهتری جهت استخراج ترکیبات زیست فعال تفاله انگور سیاه سردشت می‌باشد، همچنین می‌توان راندمان استخراج انگور سیاه را با بهینه سازی فرایند استخراج توسط روش سطح پاسخ افزایش داد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of Ultrasound Assisted and Maceration Extraction of Bioactive Compounds of Sardasht Black Grape residue by using Response Surface Methodology

نویسندگان English

Sara Matini 1
Seyed Ali Mortazavi 2
Ali Reza Sadeghian 3
Akram Sharifi 4
1 Department of food science and technology, Sabzvar Branch, Islamic Azad University
2 Sabzevar Branch, Islamic Azad University
3 Research Institute of food science and technology
4 Department of Food Science and Engineering, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University
چکیده English

Sardasht black grape (Vitis Viniferae cv. Rash) is one of the most important grape cultivars in west Azerbaijan province in Iran that mainly used for grape juice production. Black grape residues are a cheap source of bioactive compounds. In this research ultrasound-assisted (UAE) and maceration extraction (ME) were applied for bioactive compounds extraction of Sardasht black grape residues. A central composite design was used to obtain the optimal conditions of UAE and ME; the effects of operating conditions (temperature and time) on phenolic compounds, anthocyanin content and antioxidant activity were studied through response surface methodology (RSM). Optimized conditions were as follows: extraction time was 24 h, and temperature was 35°C for ME and 55°C and 15 min for UAE. Under these conditions the phenolic compounds, anthocyanins and antioxidant activity obtained by ME and UAE methods were 96.779 mg GAE/100 ml, 118.345 mg/L, 55.49% and 114.115 mg GAE/100 ml, 121.645 mg/L, 64.89%, respectively. This study provides evidence that UAE is an effective technique for the extraction of bioactive compounds from Sardasht black grape residues.

کلیدواژه‌ها English

anthocyanins
Maceration
phenolic compounds
response surface methodology
Sardasht black grape
Ultrasound-assisted extraction
[1] Pourali, A., Afrouziyeh, M. and Moghaddaszadeh-ahrabi, S., 2014. Extraction of phenolic compounds and quantification of the total phenol of grape pomace. Eur J Exp Bio, 4(1), pp.174-176.
[2] Khodaei, J. and Akhijahani, H.S., 2012. Some physical properties of Rasa grape (Vitis vinifera L.). World Applied Sciences Journal, 18(6), pp.818-825.
[3] Sharifi, A., Niakousari, M., Mortazavi, S.A. and Elhamirad, A.H., 2019. High-pressure CO2 extraction of bioactive compounds of barberry fruit (Berberis vulgaris): process optimization and compounds characterization. Journal of Food Measurement and Characterization, 13(2), pp.1139-1146.
[4] Aspé, E. and Fernández, K., 2011. The effect of different extraction techniques on extraction yield, total phenolic, and anti-radical capacity of extracts from Pinus radiata Bark. Industrial Crops and Products, 34(1), pp.838-844.
[5] Maran, J.P., Manikandan, S., Nivetha, C.V. and Dinesh, R., 2017. Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arabian Journal of Chemistry, 10, pp.S1145-S1157.
[6] Brochier, B., Mercali, G.D. and Marczak, L.D.F., 2016. Influence of moderate electric field on inactivation kinetics of peroxidase and polyphenol oxidase and on phenolic compounds of sugarcane juice treated by ohmic heating. LWT, 74, pp.396-403.
[7] El Darra, N., Grimi, N., Vorobiev, E., Louka, N. and Maroun, R., 2013. Extraction of polyphenols from red grape pomace assisted by pulsed ohmic heating. Food and Bioprocess Technology, 6(5), pp.1281-1289.
[8] Ballard, T.S., Mallikarjunan, P., Zhou, K. and O’Keefe, S., 2010. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chemistry, 120(4), pp.1185-1192.
[9] Vatai, T., Škerget, M. and Knez, Ž., 2009. Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. Journal of Food Engineering, 90(2), pp.246-254.
[11] Chang, C.Y., Lee, C.L. and Pan, T.M., 2006. Statistical optimization of medium components for the production of Antrodia cinnamomea AC0623 in submerged cultures. Applied microbiology and biotechnology, 72(4), p.654.
[12] Burin, V.M., Ferreira-Lima, N.E., Panceri, C.P. and Bordignon-Luiz, M.T., 2014. Bioactive compounds and antioxidant activity of Vitis vinifera and Vitis labrusca grapes: evaluation of different extraction methods. Microchemical Journal, 114, pp.155-163.
[13] Heidari, R., Khalafi, J. and Dolatabadzadeh, N., 2004. Anthocyanin pigments of siahe sardasht grapes. J. Sci.(Islamic Republic of Iran), 15(2), pp.113-117.
[14] Elmi Kashtiban, A. and Esmaiili, M., 2019. Extraction of phenolic compounds from Siah‐Sardasht grape skin using subcritical water and ultrasound pretreatment. Journal of Food Processing and Preservation, p.e14071.
[15] Rouhani, S., VALIZADEH, N. and Salimi, S., 2009. Ultrasonic Assisted Extraction of Natural Pigments from Rhizomes of Curcuma Longa L. Color Colorants Coat. 2: 103-113.
[16] Sharifi, A., Niakousari, M., Mortazavi, S.A. and Elhamirad, A.H., 2019. High-pressure CO 2 extraction of bioactive compounds of barberry fruit (Berberis vulgaris): process optimization and compounds characterization. Journal of Food Measurement and Characterization, 13(2), pp.1139-1146.
[17] Vega-Gálvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J. and Perez-Won, M., 2009. Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4), pp.647-653.
[18] Iland, P.G., Cynkar, W., Francis, I.L., Williams, P.J. and Coombe, B.G., 1996. Optimisation of methods for the determination of total and red‐free glycosyl glucose in black grape berries of Vitis vinifera. Australian Journal of Grape and Wine Research, 2(3), pp.171-178.
[19] Ghafoor, K., Choi, Y.H., Jeon, J.Y. and Jo, I.H., 2009. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. Journal of agricultural and food chemistry, 57(11), pp.4988-4994.
[20] Noshad, M., Mohebbi, M., Shahidi, F. and Mortazavi, S.A., 2012. Multi-objective optimization of osmotic–ultrasonic pretreatments and hot-air drying of quince using response surface methodology. Food and Bioprocess Technology, 5(6), pp.2098-2110.
[21] Azizah, A.H., Ruslawati, N.N. and Tee, T.S., 1999. Extraction and characterization of antioxidant from cocoa by-products. Food Chemistry, 64(2), pp.199-202.
[22] Gan, C.Y. and Latiff, A.A., 2011. Optimisation of the solvent extraction of bioactive compounds from Parkia speciosa pod using response surface methodology. Food chemistry, 124(3), pp.1277-1283.
[23] Shi, J., Yu, J., Pohorly, J., Young, J.C., Bryan, M. and Wu, Y., 2003. Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. J. Food Agric. Environ, 1(2), pp.42-47.
[24] Chumsri, P., Sirichote, A. and Itharat, A., 2008. Studies on the optimum conditions for the extraction and concentration of roselle (Hibiscus sabdariffa Linn.) extract. Songklanakarin Journal of Science & Technology, 30.
[25] Bucić-Kojić, A., Planinić, M., Tomas, S., Jokić, S., Mujić, I., Bilić, M. and Velić, D., 2011. Effect of extraction conditions on the extractability of phenolic compounds from lyophilised fig fruits (Ficus carica L.). Polish Journal of Food and Nutrition Sciences, 61(3), pp.195-199.
[26] Chen, F., Sun, Y., Zhao, G., Liao, X., Hu, X., Wu, J. and Wang, Z., 2007. Optimization of ultrasound-assisted extraction of anthocyanins in red raspberries and identification of anthocyanins in extract using high-performance liquid chromatography–mass spectrometry. Ultrasonics Sonochemistry, 14(6), pp.767-778.
[27] Altemimi, A., Watson, D.G., Choudhary, R., Dasari, M.R. and Lightfoot, D.A., 2016. Ultrasound assisted extraction of phenolic compounds from peaches and pumpkins. PLoS One, 11(2), p.e0148758.
[28] Hossain, M.B., Brunton, N.P., Patras, A., Tiwari, B., O’donnell, C.P., Martin-Diana, A.B. and Barry-Ryan, C., 2012. Optimization of ultrasound assisted extraction of antioxidant compounds from marjoram (Origanum majorana L.) using response surface methodology. Ultrasonics sonochemistry, 19(3), pp.582-590.
[29] Reverchon, E. and De Marco, I., 2006. Supercritical fluid extraction and fractionation of natural matter. The Journal of Supercritical Fluids, 38(2), pp.146-166.
[30] Qu, C., Yu, S., Luo, L., Zhao, Y. and Huang, Y., 2013. Optimization of ultrasonic extraction of polysaccharides from Ziziphus jujuba Mill. by response surface methodology. Chemistry Central Journal, 7(1), p.160.
[31] Barba, F.J., Brianceau, S., Turk, M., Boussetta, N. and Vorobiev, E., 2015. Effect of alternative physical treatments (ultrasounds, pulsed electric fields, and high-voltage electrical discharges) on selective recovery of bio-compounds from fermented grape pomace. Food and Bioprocess Technology, 8(5), pp.1139-1148.