بهینه‌سازی اثر پیش‌تیمار آنزیم‌بری، غوطه‌وری در غلظت‌های مختلف محلول کلریدسدیم و خشک‌کردن خلأ بر میزان جذب روغن و خواص کیفی قطعات سرخ ‌شده‌ بادنجان

نویسندگان
1 دانشگاه آزاد اسلامی واحد تبریز
2 دانشگاه آزاداسلامی واحد تبریز
چکیده
آگاهی از روابط بین متغیرهای مختلف قبل و طی فرآیند سرخ کردن عمیق از طریق انجام مدل­سازی می­تواند راه حل مناسبی برای کنترل بهینه شرایط فرآیند و در نتیجه افزایش کیفیت محصول سرخ­ شده نهایی باشد. در این پژوهش، با به کارگیری روش آماری سطح پاسخ و طرح مرکب مرکزی به منظور بررسی تاثیر متغیرهای مستقل شامل آنزیم­ بری، غوطه­ وری در غلظت­ های مختلف محلول کلریدسدیم (3، 5 و 7 درصد) و سپس خشک­ کردن تحت خلأ (در دمای 60 درجه­ سلسیوس به مدت1، 2 و 3 ساعت) قبل از فرآیند سرخ­کردن عمیق و تاثیر زمان سرخ­ کردن (در سه زمان 40، 80 و 120 ثانیه) بر میزان جذب روغن و خواص کیفی قطعات سرخ­ شده­ی بادنجان صورت گرفت. معادلات بدست آمده بیانگر آن است که متغیرهای مستقل تاثیر معنی­ داری (0/05>P) بر پارامترهای مورد بررسی دارند و موثرترین متغیر، اثر زمان خشک کردن تحت خلأ می­باشد. همچنین متغیر آنزیم­بری در تمامی تیمارهای مورد بررسی دارای اثرات معنی­ داری بوده و به رغم کاهش میزان جذب روغن، دارای اثرات نامطلوبی بر روی خواص کیفی نظیر افزایش چروکیدگی و تغییرات رنگ می­ باشد و به­ طورکلی بهینه­ سازی متغیرهای مورد بررسی نشان داد، نمونه­ های غوطه­ ور شده در محلول کلریدسدیم 3 درصد و خشک­ شده به مدت 2 ساعت و سرخ­ شده به مدت 40 ثانیه دارای حداقل میزان محتوای روغن (1/70 گرم روغن بر گرم ماده خشک بدون روغن)، محتوای رطوبت (5/70 گرم آب به گرم ماده خشک بدون روغن)، درصد چروکیدگی (3/2درصد) و تغییرات رنگ نسبت به نمونه شاهد (25=∆E) می­ باشند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of different pretreatments including blanching, soaking in different concentration of sodium chloride solution and vacuum drying on oil uptake and quality features of deep-fried eggplant

نویسندگان English

Seyede Elham Mousavi Kalajahi 1
Narmella Asefi 2
Mitra Soofi 1
1 Tabriz Branch, Islamic Azad University
2 Tabriz Branch, Islamic Azad University
چکیده English

Understanding the relation between different variables affecting deep-fat frying before and during the frying process through the modelling, could be used to set up the optimal conditions for controlling the process that results in improvement of the quality of final fried product. In the present study, the Response Surface Methodology (RSM) and Central Composite Design (CCD) was employed in order to investigate the effects of independent variables including blanching and soaking in different concentration (3, 5 and 7%) of sodium chloride solution as well as vacuum drying (1, 2 and 3 hours) prior to deep-fat-frying and also the effect of frying duration (40, 80 and 120 s) on oil uptake and quality features of deep-fried eggplant. The equations achieved through the examinations revealed that independent variables had significant effect (P < 0.05) on the parameters. Among the studied parameters, vacuum drying was found as the most efficient variable. Moreover, blanching had a significant effect (P < 0.05) on all of the treatments. Although it reduced the oil uptake, caused adverse effects on the quality of the final product such as increasing of shrinkage and colour changes. In conclusion, the optimization of variables showed that samples soaked in 3% sodium chloride solution, dried for 2 hours, and fried for 40 s had the least oil content (1.70 g/1 g of dry matter without oil), moisture content (5.70 g/1 g of dry matter without oil), percentage of shrinkage (32%) and colour changes (ΔE = 25) in comparison with the control sample.

کلیدواژه‌ها English

Blanching
Deep-fat frying
Eggplant
response surface methodology
Vacuum Drying
[1] Debnath, S., K. Bhat, and N. Rastogi. 2003. Effect of pre-drying on kinetics of moisture loss and oil uptake during deep fat frying of chickpea flour-based snack food. LWT – Food science and Technology. 36: 91–98.
[2] Krokida, M.K., V. Oreopoulou, Z.B. Maroulis, and D. Marinos. 2001. Effect of pre-drying on quality of French fries. Journal of Food Engineering. 49: 347-345.
[3] Botelhoa, F., L. Enéasa, G. Cesara, C. Bizzottob, É. Tavaresb, F. Oliveirab, M. Beatriz, A. Gloriab, M. Silvestreb, R. Arantesc, and I. Alvarez-LeiteJ. 2004. Effects of eggplant (Solanum melongena) on the atherogenesis and oxidative stress in LDL receptor knock out mice (LDLR). Food and Chemical Toxicology. 42(8): 1259–1267.
[4] Guiama, V.D., D.G. Libouga, E. Ngah, R.G. Beka, K.C. Ndi, B. Maloga, J.M. Bindzi, P. Donn, and C.M. Mbofung. 2010. Milk-clotting potential of fruit extracts from Solanum esculentum, Solanum macrocarpon L. and Solanum melongena. African Journal of Biotechnology. 9(12): 1797-802.
[5] Khurana, M., R. Bansal, V. Nayyar, and R. Setia. 2008. Yield and metal composition of brinjal (Solanum melongena) and pigweed (Amaranthus tricolor) as influenced by lead contaminated soils. Agrochimica. 52(2): 60-70.
[6] Dana, D., and I. Saguy. 2006. Review: Mechanism of oil uptake during deep-fat frying and the surfactant effect-theory and myth. Advances in colloid and interface science. 128-130: 267–272.
[7] Gupta, P., U.S. Shivhare, and A.S. Bawa. 2000. Studies on frying kinetics and quality of French fries. Drying Technology. 18: 311-321.
[8] Mellema, M. 2003. Mechanism and reduction of fat uptake in deep-fat fried foods. Trends in Food Science & Technology. 14: 364-373.
[9] Mestdagh, F., T. De Wilde, S. Fraselle, Y. Govaert, W. Ooghe, J. Degroodt, R. Verhe, C. Van Peteghem, and B. De Meulenaer. 2008. Optimization of the blanching process to reduce acrylamide in fried potatoes. LWT- Food science and Technology. 41: 1648-1654.
[10] Alvis, A., C. Velez, M. Mendoza, M. Villamiel, and H. Villada. 2009. Heat transfer coefficient during deep-fat frying. Food Control. 20: 321–325.
[11] omrani khiabanian, N., and A. safari. 2016. effect of different frying temperatures on oil uptake and quality of deep fried eggplant. Food processing and production. 3: 67-84.
[12] Azadfar, A., A.H. elhami, and A. sharifi. 2016. effect of eggplant slices coating on reducing oil uptake during frying. Innovation in Food Science and Technology. 4: 1-13.
[13] Jorjani, S., and V. Hamrahi. 2015. Effect of Guar and xanthan hydrocolloids on uptake of oil in eggplant rings during deep frying. Journal of Food Research (Agricultural Science). 2: 231-238.
[14] Hesham, A. E., M. T. Ramadan, H. S. Ali and G.H. Ragab. 2013. Optimizing Oil Reduction in Fried Eggplant Rings. Journal of Applied Sciences Research. 9(6): 3708-3717.
[15] Ertekin, C., and O. Yaldiz. 2004. Drying of eggplant and selection of a suitable thin layer drying model. Journal of food engineering. 63:349–359.
[16] Soleimani, J., Z. Emam-Djomeh, and H.R.Ghasemzadeh. 2008. Osmotic dehydration pretreatment for air-dried carrot. Pajouhesh & Sazandegi. 78: 101-109.
[17] Wu, L., T. Orikasa, Y. Ogawa, and A. Tagawa. 2007. Vacum drying characteristics of eggplants. Journal of Food Engineering. 83: 422-429.
[18] Alizadeh Bonab, S., J. Dehghannia, and M. Sowti Khiyabani. 2013. Effect of Blanching and Edible Hydrocolloids on reduction of oil uptake during frying of potato sticks. Innovative Food Technologies. 1: 21-36.
[19] AOAC, 1990. Official Methods of Analysis. Association of official Analytical Chemists, Washington, DC.
[20] Ziaiifar, A.M., F. Courtois, and G. Trystram. 2010. Porosity development and its effect on oil uptake during frying process. Journal of Food process Engineering. 33: 191-212.
[21] Yam, K.L., and S.E. Papadakis. 2004. A simple digital imaging method for measuring and analyzing color of food surfaces. Journal of Food Engineering. 61: 137–142.
[22] Mariscal, M., and P. Bouchon. 2008. Comparison between atmospheric and vacuum frying of apple slice. Food Chemistry. 107: 1561-1569.
[23] Math, R.G., V. Velu, A. Nagender, and D.G. Rao. 2004. Effect of frying conditions on moisture, fat, and density of papad. Journal of Food Engineering. 64: 429–434.
[24] Troncoso, E., and F. pedreschi. 2009. Modeling water loss and oil uptake during vacuum frying of pre-treated potato slices. LWT – Food science and Technology. 42: 1164-1173.
[25] Oliveira, F.R., and J.C. Oliveira. 1999. Processing foods: quality optimization and process assessment. CRC press. Pp: 415.
[26] Singh, S., U.S. Shivhare, J. Ahmed, and G.S.V. Raghavan. 1999. Osmotic concentration kinetics and quality of carrot preserve. Food Research International. 32: 509-514.
[27] Arevalo-Pinedo, A., and F. Murr. 2007. Influence of pre-treatments on the drying kinetics during vacuum drying of carrot and pumpkin. Journal of food engineering. 80:152–156.
[28] Mehta, U., and B. Swinburn. 2001. A review of factors affecting fat absorption in hot chips. Critical Reviews in Food science and Nutrition. 41: 133-154.
[29] Southern, C.R., X.D. Chen, M.M. Farid, B. Howard, and L. Eyres. 2000. Determining internal oil uptake and water content of fried thin potato crisps. Magazine Bullten Journal of Food and Bio products Processing. 78: 119-125.
[30] Moyano, P., and F. Pedreschi. 2006. Kinetics of oil uptake during frying of potato slices:Effect of pre-treatments. LWT–Food science and Technology. 39: 285-291.
[31] Ziaiifar, A.M., N. Achir, F. Courtois, I. Trezzani, and G. Trystram. 2008. Review of mechanisms, conditions, and factors involved in the oil uptake phenomenon during the deep-fat frying process. International Journal of Food Science and Technology. 43: 1410-1423.
[32] Moyano, P., V. Rioseco, and P. Gonzaléz. 2002. Kinetics of crust color changes during deep-fat frying of impregnated French fries. Journal of Food Engineering. 54: 249–255.
[33] Mariscal, M., and P. Bouchon. 2008. Comparison between atmospheric and vacuum frying of apple slice. Food Chemistry. 107: 1561-1569.
[34] Ngadi, M., Y. Li, and S. Oluka. 2007. Quality changes in chicken nuggets fried in oils with different degrees of hydrogenatation. LWT–Food Science and Technology. 40: 1784–1791.
[35] Garayo, J., and R. Moreira. 2002. Vacum frying of potato chips. Journal of Food Engineering. 55: 181–191 .
[36] Mayor, L., and A.M. Sereno. 2004. Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering. 61: 373–386.
[37] Pedreschi, F., P. Moyano, N. Santis, and R. Pedreschi. 2007. Physical properties of pre-treated potato chips. Journal of Food Engineering. 79(4): 1474–1482.