ویژگی‌های فیلم ژلاتینی تولید شده از فلس کپور معمولی (Cyprinus carpio) با بررسی اثر پارامترهای مؤثر در فرایند استخراج

نویسندگان
1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2 علوم پزشکی گلستان
3 مرکز تحقیقات شیلات ایران
4 دانشگاه چالمرز سوئد
5 دانشگاه دریانوردی چابهار
چکیده
در این مطالعه ژلاتین حاصل از فلس کپور معمولی(Cyprinus carpio) با استفاده از روش­های قلیایی، اسیدی و حرارتی تولید شد. سپس فاکتورهای فیزیکی، ممانعتی و خصوصیات ظاهری آن با استفاده از تغییر فاکتورهای موثر در استخراج ژلاتین اولیه آن بهینه سازی گردید. جهت بهینه سازی فیلم روش سطح پاسخ شامل یک طرح مرکب مرکزی برای فرایند استخراج در نظر گرفته شد، مجموعه­ای از فاکتورهای موثر در استخراج شامل، غلظت سدیم هیدروکسید، مدت پیش تیمار قلیایی، غلظت هیدروکلریک اسید و دمای استخراج به عنوان متغیرهای مستقل و متغیرهای وابسته شامل خواص کششی، میزان حلالیت در آب و میزان نفوذپذیری به بخار آب مورد بررسی قرار گرفت. نتایج مربوط به غربالگری بر اساس مقاومت مکانیکی و حلالیت منجر به انتخاب 4 فاکتور از 9 فاکتور گردید. در مرحله‌ی غربالگری 4 متغیر شامل دوفاکتور pH مرحله استخراج و مدت زمان تیمار قلیایی که دارای بیشترین تاثیر روی مقاومت کششی بودند و دو فاکتور غلظت تیمار اسیدی و دمای مرحله استخراج که دارای بیشترین تاثیر بر میزان حلالیت فیلم‌ها بودند جهت انجام آزمایشات اصلی انتخاب شده‌اند. سایر متغیرها که تاثیر قابل توجهی روی ویژگی‌های مکانیکی و حلالیت فیلم‌ها نداشتند در معمول‌ترین مقدار خود قرار داده شدند. آزمایشات اصلی استخراج ژلاتین شامل 30 تیمار بود. حلالیت تغییرات معنی داری (05/0>p) نشان داد. کم ترین حلالیت 08/25 درصد مربوط به تیمار شماره 9 با تیمار قلیایی به مدت 195 دقیقه، تیمار اسیدی با غلظت 0.3 مولار و استخراج در دمای 63 درجه بوده است. کم ترین نفوذپذیری مربوط به تیمار شماره 15 با تیمار قلیایی به مدت 140 دقیقه، تیمار اسیدی با غلظت 0.18 مولار و استخراج در دمای ℃76 بوده است(05/0>p). در نهایت مشخص شد با تغییر برخی فاکتورهای موثر می­توان خصوصیات فیلم ژلاتینی حاصل از فلس کپور معمولی را بهینه سازی نمود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Characteristics of Gelatin Film Produced from Common Carp Scales (Cyprinus carpio) by Investigating the Effect of Effective Parameters in Extraction Process

نویسندگان English

lahak barzegar 1
S.M. Ojagh 1
alireza alishahi 1
Mojtaba Raeesi 2
Abasali Motalebi 3
Mehdi Abdollahi 4
Seraj bita 5
1 Gorgan University of Agricultural Sciences and Natural Resources
2 Golestan University of Medical sciences
3 Iranian Fisheries Research Organization (IFRO)
4 Chalmers University, Sweden,
5 Chabahar Maritime and Marine University, Chabahar, Iran
چکیده English

In this study, gelatin from common carp scales (Cyprinus carpio) was produced using alkaline, acidic and thermal methods. Then, the physical factors, barrier properties and its appearance characteristics were optimized by changing effective factors in the initial gelatin extraction process. In order to optimize the film, the response surface methodology included a central composite design for extraction process, a series of effective factors in extraction including sodium hydroxide concentration, alkaline pre-treatment, hydrochloric acid concentration and extraction temperature as independent variables were investigated. The dependent variables including tensile properties, water solubility and water vapor permeability were investigated. The results of screening based on mechanical strength and solubility resulted in the selection of 4 factors of 9 factors. In the screening stage, four variables including two factor of the pH of extraction and the duration of the alkaline treatment that had the greatest effect on the tensile strength, and two factor including concentrations of acid treatments and the extraction temperature that had the most effect on the solubility of the films were selected for the the main experiments with gelatin extraction. Other variables that did not have a significant impact on the mechanical properties and film solubility were in their most common form. The main experiments of gelatin extraction included 30 treatments. Solubility showed significant changes (p <0.05). The lowest solubility was 25.08% for treatment No. 9 with alkaline treatment for 195 minutes, acid treatment with 0.3 molar concentration and extraction at 63 ° C. The lowest permeability was for treatment No. 15 with alkaline treatment for 140 minutes, acidic treatment with a concentration of 0.18 molar and extraction at 76 ° C (p <0.05). Finally, it was determined that by changing some of the extraction factors, the properties of gelatin film obtained from common carp scales could be optimized.

کلیدواژه‌ها English

Gelatin
Cyprinus carpio
Extraction
Effective factors
[1] GME. 2008. Gelatin Manufacturers of Europe. http://www.gelatine.org/en/gelatine/ overview/127.htm. Accessed 15.03.08.
[2] Gómez-Guillén, M. C., Pérez-Mateos, M., Gómez-Estaca, J., López-Caballero, E., Giménez, B., and Montero, P. 2009. Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science and Technology. 20(1): 3-16.
[3] Chiou, B.-S., Avena-Bustillos, R. J., Bechtel, P. J., Jafri, H., Narayan, R., Imam, S. H., Glenn, G. M., and Orts, W. J. 2008. Cold water fish gelatin films: Effects of cross-linking on thermal, mechanical, barrier, and biodegradation properties. European Polymer Journal. 44(11): 3748-3753.
[4] Otoni, C. G., Avena‐Bustillos, R. J., Chiou, B. S., Bilbao‐Sainz, C., Bechtel, P. J., and McHugh, T. H. 2017. Ultraviolet‐B Radiation Induced Cross‐linking Improves Physical Properties of Cold‐and Warm‐Water Fish Gelatin Gels and Films. Journal of Food Science. 77(9): 215-223.
[5] Pereda, M., Ponce, a. G., Marcovich, N. E., Ruseckaite, R. a., and Martucci, J. F. 2011. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids. 25(5): 1372-1381.
[6] Cho, S. M., Kwak, K. S., Park, D. C., Gu, Y. S., Ji, C. I., Jang, D. H., Lee, Y. B., and Kim, S. B.2004. Processing optimization and functional properties of gelatin from shark (Isurus oxyrinchus) cartilage. Food Hydrocolloids, 18 (4): 573–579.
[7] Akbar, I., Jaswir, I., Jamal, P., and Octavianti, F. 2017. Fish gelatin nanoparticles and their food applications: a review. International Food Research Journal, 24: 58-64.
[8] Gilsenan, P. M., and Ross-Murphy, S. B. 2015. Rheological characterization of gelatins from mammalian and marine sources. Food Hydrocolloids, 12: 191–195.
[9] Karayannakidis, P. D., and Zotos, A. 2016. Fish processing by-products as a potential source of gelatin: a review. Journal of Aquatic Food Product Technology, 25(1): 65-92.
[10] Kasankala, L.M., Xue, Y., Weilong, Y., Hong, S.D. and HE, Q. 2007. Optimization of gelatine extraction from grass carp (Ctenopharyngodon idella) fish skin by response surface methodology. Bioresource Technology, 98: 3338–3343.
[11] Cho, S.H., Jahncke, M.L., Chin, K.B. and Eun, J.B. 2006. The effect of processing conditions on the properties of gelatin from skate (Raja kenojei) skins. Food Hydrocolloid, 20: 810–6.
[12] Rozet, E., Lebrun, P., Hubert, P., Debrus, B. and Boulanger, B. 2013. Design spaces for analytical methods. TrAC Trends in Analytical Chemistry, 42: 157-167.
[13] Shigemura, Y., Ando, M., Tsukamasa, Y., Makinodan, Y. and Kawai, T. 2003. Correlation of type V collagen content with postmortem softening of fish meat during chilled storage. Fisheries science, 69(4): 842-848.
[14] ASTM. 2002. Standard test method for tensile properties of thin plastic sheeting. Annual book of ASTM Standards. Designation D882-02. Philadelphia: American Society for Testing Materials.
[15] ASTM. 2002. Standard test methods for water vapor transmission of material, E 96-95. Annual book of ASTM, American Society for Testing and Material. Philadelphia, PA.
[16] Hosseini, M., Razavi, S. and Mousavi, M. 2009. Antimicrobial, physical and mechanical properties of chitosan based films incorporated with thyme, clove and cinnamon essential oils. Journal of Food Processing and Preservation, 33(6): 727-743.
[17] Pranoto, Y., Lee, C.M. and Park, H.J. 2005. Characterizations of fish gelatin films added with gellan and κ-carrageenan. LWT-Food Science and Technology, 40: 766-774.
[18] Xiaowei, Z. 2017. An Overview of Recently Published Global Aquaculture Statistics.
[19] Prinyawiwatkul, W., Suvanich, V., Harrison, R.W., King, J.W., Sathivel, S., Pacheco, K., Rout, S.K., Nadarajah, K. and Sonti, S. 2002. Value-added from crawfish and catfish. Louisiana Agriculture, 45(4): 20-21.
[20] Ninan, G., Jose, J. and Abubacker, Z. 2011. Preparation and characterization of gelatin extracted from the skins of rohu (labeo rohita) and common carp (cyprinus carpio). Journal of Food Processing and Preservation, 35 (2011): 143-162.
[21] Montero, P. and Gomez-guillen, M.C. 2000. Extracting conditions for megrim (Lepidorhombus boscii) skin collagen affect functional properties of the resulting gelatin. Journal of Food Science, 65: 434–438.
[22] Bourtoom, T. 2008. Edible films and coatings: characteristics and properties. International Food Research Journal, 15(3): 237-248.
[23] Pereda, M., Ponce, A. G., Marcovich, N. E., Ruseckaite, R. A. and Martucci, J. F. 2011. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids, 25: 1372-1381.
[24] Rivero, S., García, M.A. and Pinotti A. 2009. Composite and bi-layer films based on gelatin and chitosan. Journal of Food Engineering, 90: 531-539.
[25] Staroszczyk, H., Pielichowska, J., Sztuka, K., Stangret, J. and Kołodziejsk, I. 2012. Molecular and structural characteristics of cod gelatin films modified with EDC and Tgase. Food Chemistry, 130: 335-343.
[26] Sothornvit, R. and Krochta, J. M. 2005. Plasticizers in edible films and coatings. In J. H. Han (Ed.), Innovations in food packaging. New York: Elsevier Publishers. pp. 403-433
[27] Rhim, J. W., Hong, S. I., Park, H. M. and Ng, P. k. w. 2006. Preparation and Characterization of Chitosan-Based Nanocomposite Films with Antimicrobial Activity. Journal of agricultural and food chemistry, 54: 5814-5822.
[28] Pereda, M., Ponce, A. G., Marcovich, N. E., Ruseckaite, R. A. and Martucci, J. F. 2011. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids, 25: 1372-1381.
[29] Jouki, M., Yazdi, F. T., Mortazavi, S. A. and Koocheki, A. 2013. Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36: 9-19.
[30] Xu, J., Bartley, J. and Johnson, R. 2016. Preparation and characterization of alginate–carrageenan hydrogel films crosslinked using a water-soluble carbodiimide (WSC). Journal of membrane science, 218(1):131-146.
[31] Shakila, R. J., Jeevithan, E., Varatharajakumar, A., Jeyasekaran, G. and Sukumar, D. 2012. Comparison of the properties of multi-composite fish gelatin films with that of mammalian gelatin films. Food Chemistry, 135(4): 2260-2267.
[32] Krochta, J .M and De Mulder-Johnston, C. 1997. Edible and biodegradable polymer films. Food Technolog, 51: 61-74.
[33] Weng, W., Zheng, H. and Su, W. 2014. Characterization of edible films based on tilapia (Tilapia zillii) scale gelatin with different extraction pH. Food Hydrocolloids, 41: 19-26.
[34] Pires, C., Ramos, C., Teixeira, B., Batis Pires, C., Ramos, C., Teixeira, B., Batista ta, I., Nunes, M. L. and Marques, A. 2013. Hake proteins edible films incorporated with essential oils: Physical, mechanical, antioxidant and antibacterial properties. Food Hydrocolloids, 30(1): 224-231.
[35] Hosseini, S. F., Rezaei, M., Zandi, M. and Ghavi, F. F.2013. Preparation and functional properties of fish gelatin-chitosan blend edible films. Food chemistry, 136(3), 1490-1495.