بررسی تاثیر عصاره حاصل از جوانه معمولی و قرار گرفته تحت امواج اولتراسونیک سه رقم مختلف گندم کشت شده در ایران بر پایداری اکسایشی روغن سویا

نویسندگان
1 استادیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه جهرم، جهرم، فارس
2 کارشناس ارشد صنایع غذایی و مدیر تولید شرکت آرد خوشه، ساری، مازندران
3 استادیار گروه ریاضی ، دانشکده علوم پایه ، دانشگاه جهرم، جهرم، فارس
چکیده
در تحقیق حاضر، اثر امواج اولتراسونیک بر فعالیت آنتی­اکسیدانی عصاره آبی- اتانولی (50:50) جوانه رقمهای گندم تجن، N8019 و مروارید بررسی شد. نتایج نشان داد که امواج اولتراسونیک باعث افزایش میزان ترکیبات پلی­فنلی و توکوفرولی شد، اگرچه اثر آنها بر استخراج ترکیبات پلی­فنلی خیلی بهتر یود. میزان ترکیبات پلی فنلی عصاره جوانه­های گندم تجن، N8019 و مروارید به ترتیب 679، 783 و 545 میلی­گرم بر کیلوگرم بود، که بعد از به کار بردن امواج اولتراسونیک میزان این ترکیبات به ترتیب به 777، 891 و 593 میلی­گرم بر کیلوگرم افزایش یافت. همچنین فعالیت آنتی­اکسیدانی (آزمونهای مهارکنندگی رادیکال آزاد DPPH، بی­رنگ شدن بتاکاروتن و رنسیمت) تیمارهای مختلف نشان داد که بهترین نمونه، عصاره استخراج شده از جوانه گندم N8019 تحت فرایند اولتراسونیک و بعد از آن به ترتیب 100 پی­پی­امTBHQ ، عصاره جوانه گندم تجن تحت فرایند اولتراسونیک، عصاره جوانه گندم مروارید تحت فرایند اولتراسونیک، عصاره­های معمولی جوانه گندم N8019 و تجن و عصاره معمولی گندم مروارید (78.9 درصد) قرار داشتند. بررسی نتایج نشان داد که ارتباط قوی بین میزان ترکیبات آنتی­اکسیدانی عصاره مختلف استخراج شده از جوانه گندم و قدرت آنتی اکسیدانی آنها وجود دارد. همچنین نتایج آزمون گرمخانه گذاری (به عنوان یک آزمون معتبر) در 60 درجه سانتیگراد به مدت 24 روز نشان داد که TBHQ با اختلاف معنی­داری بهترین تیمار جهت افزایش پایداری اکسایشی روغن سویا بود و بعد از آن به ترتیب عصاره استخراج شده از جوانه گندم N8019 قرار گرفته تحت فرایند اولتراسونیک، عصاره جوانه گندم تجن تحت فرایند اولتراسونیک، عصاره جوانه گندم مروارید تحت فرایند اولتراسونیک، عصاره های معمولی جوانه گندم N8019 و تجن و عصاره معمولی گندم مروارید قرار داشتند.
کلیدواژه‌ها

عنوان مقاله English

Investigating the effect of extracts from the germs of different wheat cultivars (usual and under the ultrasonic process) in oxidative stability of soybean oil

نویسندگان English

javad tavakoli 1
Javad Khani 2
Mohammad Shahroozi 3
1 Faculty of Agriculture, Department of Food Science and Technology, Jahrom University
2 Master of Science in Food Science and Technology and Production Manager of Khousheh Sari Flour Mills
3 Faculty of Basic Science, Department of Mathematics, Jahrom University, Jahrom, Fars, Iran
چکیده English

In the present study, the effect of ultrasonic waves on the antioxidant activity of aqueous-ethanolic extract (50:50) of wheat germ of Tajan, N8019 and Morvarid cultivars was investigated. The results showed that ultrasonic waves increased the amount of, although their effect on the extraction of polyphenol compounds was much better. The amount of polyphenolic compounds of Tajan, N8019 and Morvarid wheat germ extracts were 679, 783 and 545 mg / kg, respectively. After applying ultrasonic waves, these compounds were 777, 891 and 593 mg/kg increased. Also, antioxidant activity (DPPH radical-scavenging assay, β-carotene bleaching assay and Rancimat test) of different treatments showed that the extracted extracts from wheat germ of N8019 under ultrasonic process was the best sample and then were 100 ppm TBHQ, extract of Tajan wheat germ under ultrasonic process, extract of Morvarid wheat germ under ultrasonic process, extracts of common wheat germ of N8019 and Tajan and extract of common Morvarid wheat germ, respectively. The results showed that there is a strong correlation between the amount of antioxidant compounds of different extracts extracted from wheat germ, especially phenolic compounds and their antioxidant power. Also, the results of oven test (at 60 ºC during 24 day) indicated TBHQ was the best treatment and followed by extracted extracts from wheat germ of N8019 under ultrasonic process, Tajan under ultrasonic and Morvarid under ultrasonic and extracts of common wheat germ of N8019, Tajan and Morvarid, respectively.

کلیدواژه‌ها English

Wheat germ
aqueous-ethanolic extract
polyphenol compounds
Oxidative stability
Antioxidant activity
[1] Flanagan, J., 2002. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAP) and ferric reducing antioxidant power (FRAP) assays: A comparative study. Agricultur and Food Chemistry, 50: 3122- 3128.
[2] Shahsavari, N., Barzegar, M., Sahari, M.A., Naghdibadi, H., 2008. Antioxidant activity and chemical characterization of essential oil of Bunium persicum. Plant Foods for Human Nutrition, 63: 183 -188.
[3] Moghimi, M., 2017. Evaluation of physicochemical, antioxidant and sensory properties of cupcake containing wheat germ and sesame meal. Food Science and Technology, 69: 307-318 [in Persian].
[4] Zhu, K., Zhou, H., 2005. Purification and characterization of a novel glycoprotein from wheat germ water-soluble extracts. Process Biochemistry, 40: 1469-1474.
[5] Hashemi Gahruie, H., Ghiasi, F., Eskandari, M.H., Majzoobi, M., 2016. Evaluation of oven drying effects on physicochemical and nutritional properties of wheat germ as a functional food supplements. Food Researches, 26: 37-47[in Persian].
[6] Mahmoud, A.A., Mohdaly, A.A., Nady, A.A., 2015. Elneairy wheat germ: An Overview on nutritional value, antioxidant potential and antibacterial characteristics. Food and Nutrition Sciences, 6: 265-277.
[7] Tavakoli, J., Rashidi, M.J., Hashemi, S.M.B., 2017. Evaluating Antioxidative Activity of the Peel of Cucurbita pepo Cultivated In Two Areas of Mazandaran, Iran. Current Nutrition and Food Science, 13: 319-322.
[8] Esmaeilzadeh, Kenari., R, Mohsenzadeh, F., Raftani Amiri, Z., 2014. Antioxidant activity and total phenolic compounds of Dezful sesame cake extracts obtained by classical and ultrasound-assisted extraction methods. Food Science and Nutrition, 2: 426–435.
[9] Szydłowska Czerniak, A., Tułodziecka, A., 2014. Antioxidant Capacity of Rapeseed Extracts Obtained by Conventional and Ultrasound Assisted Extraction. Journal of American Oil Chemistry Society, 91: 2011–2019.
[10] Sfahlan, A.J., Mahmoodzadeh, A., Hasanzadeh, A., Heidari, R., Jamei, R., 2009. Antioxidants and antiradicals in almond hull and shell (Amygdalus communis L.) as a function of genotype. Food Chemistry, 115: 529-533.
[11] Wong, M.L., Timms, R.E., Goh, E.M., 1988. Colorimetric determination of total tocopherols in palm oil, olein and stearin. Journal of American Oil Chemistry Society, 65: 258–261.
[12] Siger, A., Nogala-kalucka, M., Lampart-Szczapa, E., 2007. The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. Food Lipid, 15: 137-149.
[13] Benzie, I.F.F., Strain, J.J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochemistry, 239: 70-76.
[14] Tavakoli, J., Emadi, T., Hashemi, S.M.B., Mousavi Khaneghah, A., Munekata, P.E.S., Lorenzo, J.M., Brnčić, M., Barba, F.J., 2018. Chemical properties and oxidative stability of Arjan (Amygdalus reuteri) kernel oil as emerging edible oil. Food Research International, 107: 378-384.
[15] Shantha, N. C., Decker, E. A., 1994. Rapid, sensitive, iron-based spectrophotometric methods for determination of perorlride values of food lipids. Journal of AOAC International, 77: 421–424.
[16] Endo, Y., Li, C.M., Tagiri-Endo, M., Fugimoto, K., 2001. A modified method for the estimation of total carbonyl compounds in heated and frying oils using 2-propanol as a solvent. Journal of American Oil Chemistry Society, 10:1021–1024.
[17] Muñiz-Márquez, D.B., Martínez-Ávila, G.C., Wong-Paz, J.E., Belmares-Cerda, R., Rodríguez-Herrera, R., Aguilar, C.N., 2013. Ultrasound-assisted extraction of phenolic compounds from Laurus nobilis L. and their antioxidant activity. Ultrason Sonochemistry, 20: 1149-54.
[18] Goli, A.H., Barzegar, M., Sahari, M.A., 2005. Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food chemistry, 92: 521-525.
[19] Carciochi, R. A., Manrique, G. D., Dimitrov, K., 2015. Optimization of antioxidant phenolic compounds extraction from quinoa (Chenopodium quinoa) seeds. Journal ofFood Science and Technology, 52, 4396-4404.
[20] Fattahi, M., Rahimi, R., 2016. Optimization of Extraction Parameters of Phenolic Antioxidants from Leaves of Capparis spinosa. Food Analytical Methods, 9, 2321-2334.
[21] Saikia, S., Mahnot, N. K., & Mahanta, C. L., 2015. Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food Chemistry, 171, 144-152.
[22] Shahidi, F., 2005. Baile’s Industrial Oil and Fat Productions. 10th ed. Wiley Interscience.
[23] Hesam, F., Balali, G.R., Taheri Tehrani, R., 2012. Evaluation of antioxidant activity of three common potato (Solanum tuberosum) .cultivars in Iran. Avicenna Journal of Phytomedicine, 2: 79-85.
[24] Wan, Ch., Yu, Y., Zhou, Sh., Liu, W., Tian, Sh., Cao, Sh., 2011. Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures. Pharmacognosy Magazine, 7: 40-45.
[25] Tahanejad, M., Barzegar, M., Sahari, M.A., Naghdi Badi, H., 2012. Evaluating antiradical activity of Malva sylvestris L extract and its application in oil system. Medical Plants, 42: 86-97 [in Persian].
[26] Lim, D.K., Choi, U., Shin, D.H., 1996. Antioxidative activity of ethanol extract from Korean medicinal plants. Korean Journal of Food Science and Technology, 28: 83-89.
[27] Shahidi, F., Zhong, Y., 2005. Lipid Oxidation: Measurement Methods. In: Shahidi F (ed) Bailey’s industrial oil and fat products. 6rd edn. Wiley, New Jersey, pp 370-373.
[28] Farhoosh, R., Tavassoli-Kafrani, M.H., Sharif, A., 2011. Antioxidant activity of sesame, rice bran and bene hull oils and their unsaponifiable matters. European Journal of Lipid Science and Technology, 113: 506-512
[29] Srivastava, Y., Dutt Semwal, A., 2013. A study on monitoring of frying performance and oxidativestability of virgin coconut oil (VCO) during continuous/prolonged deep fat frying process using chemical and FTIR spectroscopy. Food Science and Technology, 52: 981-984.