[1] Alboofetileh, M., Rezaei, M., Hosseini, H., Abdollahi, M. (2014). Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens. Food Control., 36(1), 1-7.
[2] Denavi, G., Tapia-Blácido, D.R., Añón, M.C., Sobral, P.J.A., Mauri, A.N., Menegalli, F.C. (2009). Effects of drying conditions on some physical properties of soy protein films. Journal of Food Engineering., 90(3), 341-349.
[3] Soazo, M., Rubiolo, A.C., Verdini, R.A. (2011). Effect of drying temperature and beeswax content on physical properties of whey protein emulsion films. Food Hydrocolloids., 25(5), 1251-1255.
[4] Souza, A.C., Benze, R., Ferrão, E. S., Ditchfield, C., Coelho, A.C.V., Tadini, C.C. (2012). Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT - Food Science and Technology., 46(1), 110-117.
[5] Shahbazi, M., Ahmadi, S.J., Seif, A., Rajabzadeh, G. (2016). Carboxymethyl cellulose film modification through surface photo-crosslinking and chemical crosslinking for food packaging applications. Food Hydrocolloids., 61, 378-389.
[6] Wang, L. F., Shankar, S., Rhim, J. W. (2017). Properties of alginate-based films reinforced with cellulose fibers and cellulose nanowhiskers isolated from mulberry pulp. Food Hydrocolloids., 63, 201-208.
[7] Huq, T., Salmieri, S., Khan, A., Khan, R.A., Le Tien, C., Riedl, B., Lacroix, M. (2012). Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydrate Polymers., 90(4), 1757-1763.
[8] Alboofetileh, M., Rezaei, M., Hosseini, H., Abdollahi, M. (2014). Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens. Food Control., 36(1), 1-7.
[9] Shankar, S., Wang, L. F., Rhim, J. W. (2016). Preparations and characterization of alginate/silver composite films: Effect of types of silver particles. Carbohydrate Polymers., 146, 208-216.
[10] Luo, Y., Teng, Z., Li, Y., Wang, Q. (2015). Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydrate Polymers., 122, 221-229.
[11] Acevedo-Fani, A., Salvia-Trujillo, L., Rojas-Graü, M.A., Martín-Belloso, O. (2015). Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocolloids., 47, 168-177.
[12] Chen, H., Hu, X., Chen, E., Wu, S., McClements, D.J., Liu, S., Li, Y. (2016). Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocolloids., 61, 662-671.
[13] Sothornvit, R., Hong, S. I., An, D.J., Rhim, J. W. (2010). Effect of clay content on the physical and antimicrobial properties of whey protein isolate/organo-clay composite films. LWT-Food Science and Technology., 43(2), 279-284.
[14] Li, X., Ji, N., Qiu, C., Xia, M., Xiong, L., Sun, Q. (2015). The effect of peanut protein nanoparticles on characteristics of protein-and starch-based nanocomposite films: A comparative study. Industrial Crops and Products, 77, 565-574.
[15] Fan, H., Ji, N., Zhao, M., Xiong, L., & Sun, Q. (2016). Characterization of starch films impregnated with starch nanoparticles prepared by 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation. Food chemistry., 192, 865-872.
[16] Fernández-Pan, I., Ziani, K., Pedroza-Islas, R., Maté, J. (2010). Effect of drying conditions on the mechanical and barrier properties of films based on chitosan. Drying Technology., 28(12), 1350-1358.
[17] Rojas-Graü, M.A., Raybaudi-Massilia, R.M., Soliva-Fortuny, R.C., Avena-Bustillos, R.J., McHugh, T.H., Martín-Belloso, O. (2007). Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest biology and Technology., 45(2), 254-264.
[18] Du, W.X., Olsen, C., Avena‐Bustillos, R., McHugh, T., Levin, C., Friedman, M. (2009). Effects of allspice, cinnamon, and clove bud essential oils in edible apple films on physical properties and antimicrobial activities. Journal of Food Science., 74(7).
[19] Otoni, C.G., de Moura, M.R., Aouada, F.A., Camilloto, G.P., Cruz, R.S., Lorevice, M.V., Mattoso, L.H. (2014). Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocolloids., 41, 188-194.
[20] Zúñiga, R., Skurtys, O., Osorio, F., Aguilera, J., Pedreschi, F. (2012). Physical properties of emulsion-based hydroxypropyl methylcellulose films: effect of their microstructure. Carbohydrate Polymers., 90(2), 1147-1158.
[21] Ma, X., Chang, P.R., Yu, J. (2008). Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers., 72(3), 369-375.
[22] Aila-Suárez, S., Palma-Rodríguez, H.M., Rodríguez-Hernández, A.I., Hernández-Uribe, J.P., Bello-Pérez, L.A., Vargas-Torres, A. (2013). Characterization of films made with chayote tuber and potato starches blending with cellulose nanoparticles. Carbohydrate Polymers., 98(1), 102-107.
[23] Sánchez-González, L., Cháfer, M., Hernández, M., Chiralt, A., González-Martínez, C. (2011). Antimicrobial activity of polysaccharide films containing essential oils. Food Control., 22(8), 1302-1310.