مدل سازی خشک کردن لایه نازک خرمالو به دو روش هوای داغ و مادون قرمز

نویسندگان
1 دانشجوی کارشناسی ارشد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
2 استادیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
3 دانشجوی دکتری مهندسی مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد
چکیده
چکیده خشک کردن یکی از روش های نگهداری می باشد که حذف رطوبت از طریق انتقال همزمان حرارت و جرم صورت می گیرد. به دلیل بهره‏وری کم انرژی و مدت زمان طولانی خشک کردن با هوای داغ، استفاده از تکنیک های نوین خشک کردن نظیر مادون قرمز باید مورد مطالعه قرار گیرد. در این پژوهش اثر دما و روش خشک کردن بر پارامترهای سینتیکی برگه خرمالو به ضخامت 5 میلی متر بررسی شد. آزمون ها در سه سطح دمایی 50، 60 و 70 درجه سانتی گراد و دو نوع خشک کن هوای داغ و مادون قرمز با 3 تکرار انجام شد. داده های آزمایشی مربوط به رفتار خشک شدن نمونه ها بر اساس 9 مدل ارائه شده در منابع به منظور ارزیابی سینتیک خشک کردن برگه های خرمالو مورد تجزیه و تحلیل قرار گرفت. کیفیت برازش مدل های پیشنهاد شده بر اساس پارامترهای ضریب تبیین (R2)، مجذور میانگین مربعات خطا (RMSE)، کای مربع (χ2) و مجموع مربعات خطا (SSE) ارزیابی گردید. طبق نتایج به دست آمده بهترین مدل جهت برازش داده های خشک کردن هوای داغ در هر سه سطح دمایی، مدل ونگ و سینگ بود. برای داده های مربوط به خشک کردن توسط مادون قرمز در دو سطح دمایی 50 و 60 درجه سانتی گراد ، مدل لگاریتمی و در دمای70 درجه سانتی گراد ، مدل دوجمله ای برازش مناسبی را نشان دادند. این مدل ها دارای بالاترین ضریب تبیین و کمترین مجذور میانگین مربعات خطا، کای مربع و مجموع مربعات خطا، نسبت به سایر مدل ها بودند.
کلیدواژه‌ها

عنوان مقاله English

Modeling on hot air and infrared thin layers drying of persimmon slices

نویسندگان English

Seyede Fatemeh Mosavi Baygi 1
Atefeh Farahmand 1
Masood Taghi Zadeh 2
Amin Zia Foroghi 3
چکیده English

Drying is one of the preservation techniques in which moisture removal through simultaneous heat and mass transfer occurs. Due to low energy efficiency and prolonged time of hot air drying, the new drying techniques such as infrared, must be employed. In this study, the effects of temperature and drying method on the kinetics of persimmon slices with 5 mm fixed thickness were investigated. The tests were performed at 3 temperature levels (50, 60 and 70◦c) using both hot air and infrared dryers in 3 replicates. The experimental data obtained from drying treatments were fitted to 9 mathematical models in order to evaluate the drying kinetics of persimmon slices. The fitting quality of the proposed models was evaluated using the coefficient of determination (R2), root mean squares error (RMSE), chi- square (χ2) and sum square error (SSE). Based on the results, Wang and Singh model was found to be the best model fitted to the experimental hot air drying data at all temperature levels. In the case of experimental infrared drying data at 50 and 60◦c, the logarithmic model showed the best fitting results while at 70◦C, 2-term model showed the highest fitting quality. These models exhibited the highest value of R2 and the least RMSE, χ2 and SSE comparing to the other models

کلیدواژه‌ها English

Key words: Persimmon
Drying kinetics
Infrared
Hot air
[1] Celik, A., & Ercisl, S. 2008. Persimmon cv. Hachiya (Diospyros kaki Thunb.) fruit: some physical, chemical and nutritional properties. International Journal of Food Sciences and Nutrition, 59: 599-606.
[2] Nicoleti, j, f., Silveira-Jr, v., Telis-Romero, j., & Telis, v, r, n. 2005. Viscoelastic behavior of persimmons dried at constant air temperature. LWT - Food Science and Technology, 38: 143–150.
[3] Jang, I. C., Oh, W.G., A., G.H., Lee, J.H., & Lee, S.C. 2011. Antioxidant Activity of 4 Cultivars of Persimmon Fruit. Food Science and Biotechnoogyl, 20: 71-77.
[4] Khademi, O., Zamani, Z., Mostofi, y., Kalantari, s., & Ahmadi.a. 2012. Extending Storability of Persimmon Fruit cv. Karaj by Postharvest Application of Salicylic Acid. Journal of Agricultural Science and Technology, 14: 1067-1074.
[5] Dandamrongrak, R., Young, G., & Mason, R. 2002. Evaluation of various pre-treatments for the dehydration of banana and selection of suitable drying models. Journal of Food Engineering, 5: 139–146.
[6] Doymaz, I. 2012. Drying of Pomegranate Seeds Using Infrared Radiation. Food Science and Biotechnology. 21: 1269-1275.
[7] Doymaz, I. 2007. The kinetics of forced convective air-drying of pumpkin slices. Journal of Food Engineering, 79: 243–248.
[8] Doymaz, I. 2009. Mathematical Modelling Of Thin-Layer Drying Of Kiwifruit Slices. Journal of Food Processing and Preservation, 33: 145-160.
[9] Abe, T., & Afzal, T. M. 1997. Thin-Layer Infrared Radiation Drying of Rough Rice. Journal of Agricultural Engineering Research, 67: 289 – 297.
[10] Togrul, H. 2006. Suitable drying model for infrared drying of carrot. Journal of Food Engineering, 77: 610–619.
[11] Akpinar, E. k., Bicer. Y & Yildiz, c. 2003. Thin layer drying of red pepper. Research note. Journal of Food Engineering, 59: 99–104.
[12] Babalis, s. j., Papanicolaou, e., Kyriakis, n., & Belessiotis, v. g. 2006. Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica). Journal of Food Engineering, 75: 205–214.
[13] Amirnejad, H. Khoshtaghaza, M, H. Pahlavanzadeh, H.1390. Determine the thin layer drying kinetics mushroom with infrared method. Iranian Journal of Biosystems Engineering Journal. Vol: 24. pp: 53- 61.
[14] Akpinar, E. k. 2006. Determination of suitable thin layer drying curve model for some vegetables and fruits. Journal of Food Engineering, 73: 75–84.
[15] Bozkir, O. 2006. Thin layer drying and mathematical modeling for washed dry apricots. Journal of Food Engineering, 77: 146-151.
[16] Sharma, G. P., Verma, R. C., & Pankaj, P. 2005. Mathematical modeling of infrared radiation thin layer drying of onion slices. Journal of Food Engineering, 71: 282-286.
[17] Pourfallah, Z. Nahardani, M. Salaminia, M. Nourian, S, and Mohammadi, M. 1390. Drying kinetics slices of Jerusalem artichoke (Helianthus tuberosus L.) using hot air convection. Journal of Food Science and Technology. Vol:3. pp:1-13.
[18] Ponkham, K., Meeso, N., Soponronnarit, S., & Siriamornpun, S. 2011. Modeling of combined far-infrared radiation and air drying of a ring shaped-pineapple with/without shrinkage. Food and Bio products processing, 90: 155-164.
[19] Ghaderi, A. Abbasi, S. Motevalli, A. and  Minaei, S. 1390. Mathematical model for drying kinetics of sour cherry fruit  in microwave-vacuum drying. Iranian Journal of Nutrition Sciences & Food Technology, Vol: 6. pp: 55- 64.
[20] Hezbavi, A and Minaei, S. 1389. Preparation and study of qualitative properties of dried persimmon. Journal of Food Science. Vol:7. pp:65- 72.
[21] Doymaz, I. 2008. Convective drying kinetics of strawberry. Chemical Engineering and Processing: Process Intensification, 47: 914-919.
[22] Izli, N., Yıldız, G., Unal, H., Isik, E., & Uylaser, V. 2014. Effect of different drying methods on drying characteristics, colour, total phenolic content and antioxidant capacity of Goldenberry (Physalis peruviana L.). International Journal of Food Science and Technology, 49, 9–17.
[23] Hamdami, n., Sayyad, m., & Oladegaragoze, a. 2006. Mathematical modeling of thin layer drying kinetics of apples slices. P. 1949- 1958. In Proceedings of the 13th World Congress of Food Science & Technology. 17 – 21 Sept. 2006. EDP Sciences. Nantes, France.
 [24] Sacilik, K., & Konuralp Elicin, A. 2006. The thin layer drying characteristics of organic apple slices. Journal of Food Engineering, 73: 281–289.
[25] Akgun, N. A. & Doymaz, I. 2005. Modelling of olive cake thin-layer drying process. Journal of Food Engineering, 68: 455–461.
 
[26] Wang, Z., Sun, J., Liao, X., Chen, F. & Zhao, G. 2007. Mathematical modeling on hot air drying of thin layer apple pomace. Food Research international, 40: 36-46.
[27] Togrul, i., & Pehlivan, d. 2003. Modelling of drying kinetics of single apricot. Journal of Food Engineering, 58: 23–32.
[28] Chen, C., &Wu, P. 2001. Thin-layer Drying Model for Rough Rice with High Moisture Content. Journal of Agricultural Engineering Research, 80: 45-52.
[29] Madamba, P, S., Driscoll, R, H., & Buckle, K, A. 1996. The Thin-layer Drying Characteristics of Garlic Slices. Journal of Food Engineering, 29: 15-97.
[30] Sacilik, K., Konuralp Elicin, A., & Unal, G. 2006. Drying kinetics of Uryani plum in a convective hot-air dryer. Journal of Food Engineering, 76: 362–368.
[31] Zielinska, M. & Markowski, M. 2010. Air drying characteristics and moisture diffusivity of carrots. Chemical Engineering and Processing, 49: 212–218.