مجله علوم و صنایع غذایی ایران

مجله علوم و صنایع غذایی ایران

ارزیابی ویژگی‌های شیمیایی و اثر ضدقارچی اسانس‌ اسطوخودوس فلس‌دار (Lavandula sublepidota) بر کپک‌های عامل پوسیدگی و فساد میوه‌ توت فرنگی طی انبارمانی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشیار، گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران.
2 استادیار، گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران.
10.48311/fsct.2026.84088.0
چکیده
میوه توت‌فرنگی نسبت به فساد قارچی بسیار حساس است. در این راستا، استفاده از ترکیبات با منشأ طبیعی که دارای فعالیت ضد قارچی بالقوه هستند (مانند اسانس‌های گیاهی)، می‌تواند راه‌حل مؤثری برای کنترل و پیشگیری از بیماری‌های پس از برداشت میوه توت‌فرنگی باشد. در این مطالعه، فعالیت ضد قارچی اسانس اسطوخودوس فلس­دار (Lavandula sublepidota) بر روی گونه‌های قارچی که باعث پوسیدگی توت‌فرنگی می‌شوند، یعنی آسپرژیلوس نایجر، رایزوپوس استولونیفر و بوتریتیس سینه­را، مورد ارزیابی قرار گرفت. ترکیبات شیمیایی، محتوای فنول کل و فلاونوئیدها و فعالیت آنتی‌اکسیدانی اسانس نیز تعیین شد. اسانس اسطوخودوس فلس­دار غنی از لینالول (85/43 درصد) بود. میزان فنول و فلاونوئید کل اسانس به ترتیب mg GAE/g 29/86 و mg QE/g 52/21 بود. اسانس اسطوخودوس فلس­دار فعالیت قابل‌توجهی در مهار رادیکال آزاد DPPH (53/61 درصد) و ABTS (85/69 درصد) داشت. نتایج ضد قارچی نشان داد که بوتریتیس سینه­را حساس‌ترین گونه قارچی به اسانس بود. قطر هاله عدم رشد در روش دیسک و دیفیوژن آگار برای این سویه به ترتیب 30/13 میلی‌متر و 35/14 میلی‌متر بود. علاوه بر این، غلظت کمتری از اسانس برای مهار رشد یا کشتن بوتریتیس سینه­را مورد نیاز بود؛ بطوریکه، حداقل غلظت مهارکنندگی و قارچ­کشی برای این سویه به ترتیب  4 و 128 میلی‌گرم در میلی‌لیتر به دست آمد. بر اساس نتایج، اسانس اسطوخودوس فلس­دار می‌تواند به عنوان یک عامل ضد قارچ طبیعی برای جلوگیری از رشد قارچ‌های بیماری‌زا بر روی میوه توت‌فرنگی و افزایش ماندگاری آن استفاده شود.
 
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of the chemical characteristics and antifungal effect of Lavandula sublepidota essential oil on molds causing strawberry fruit rot and spoilage during storage

نویسندگان English

Mostafa Rahmati-Joneidabad 1
Fatemeh Borna 2
1 Associate Professor, Department of Horticultural Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
2 Assistant Professor, Department of Horticultural Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
چکیده English

Strawberries are highly prone to fungal decay. Therefore, utilizing naturally occurring compounds with potential antifungal properties, such as plant essential oils, could effectively control and prevent postharvest diseases in strawberries. This study evaluates the antifungal effectiveness of Lavandula sublepidota essential oil against fungal species responsible for strawberry rot, specifically Aspergillus niger, Rhizopus stolonifer, and Botrytis cinerea. The research also examined the essential oil's chemical composition, total phenolic and flavonoid content, and antioxidant activity. L. sublepidota essential oil was found to be rich in linalool (43.85%). The total phenolic content was recorded at 86.29 mg GAE/g, and the flavonoid content at 21.52 mg QE/g. This essential oil demonstrated significant scavenging activity against DPPH (61.53%) and ABTS (69.85%) free radicals. Antifungal testing revealed that B. cinerea was the most sensitive species, with inhibition zone diameters measuring 13.30 mm and 14.35 mm for disk and well diffusion agar methods, respectively. Furthermore, lower concentrations of the essential oil were necessary to inhibit or eliminate B. cinerea, with minimum inhibitory and fungicidal concentrations of 4 mg/ml and 128 mg/ml, respectively. These findings suggest that L. sublepidota essential oil could serve as a natural antifungal agent to inhibit the growth of harmful fungi on strawberries and extend their shelf life.
 

کلیدواژه‌ها English

Lavandula sublepidota
essential oil
antifungal
shelf life
strawberries
[1] César de Albuquerque Sousa, T., de Lima Costa, I. H., Gandra, E. A. , & Meinhart, A. D. (2024). Use of edible coatings as a new sustainable alternative to extend the shelf life of strawberries (Fragaria ananassa): A review. Journal of Stored Products Research, 108, 102375. DOI: https://doi.org/10.1016/j.jspr.2024.102375.
[2] Gol, N. B., Patel, P. R. , & Rao, T. V. R. (2013). Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biology and Technology, 85, 185-195. DOI: https://doi.org/10.1016/j.postharvbio.2013.06.008.
[3] Hosseini, A., Koushesh Saba, M. , & Ashengroph, M. (2024). Efficacy of aquatic yeasts to control gray mold decay, and impacts on strawberry quality during cold storage and shelf life. Scientia Horticulturae, 323, 112503. DOI: https://doi.org/10.1016/j.scienta.2023.112503.
[4] El-Naggar, N. E.-A., Saber, W. I. A., Zweil, A. M. , & Bashir, S. I. (2022). An innovative green synthesis approach of chitosan nanoparticles and their inhibitory activity against phytopathogenic Botrytis cinerea on strawberry leaves. Scientific Reports, 12(1), 3515. DOI: 10.1038/s41598-022-07073-y.
[5] Oliveira Filho, J. G. d., da Cruz Silva, G., de Aguiar, A. C., Cipriano, L., de Azeredo, H. M. C., Bogusz Junior, S. , & Ferreira, M. D. (2021). Chemical composition and antifungal activity of essential oils and their combinations against Botrytis cinerea in strawberries. Journal of Food Measurement and Characterization, 15(2), 1815-1825. DOI: 10.1007/s11694-020-00765-x.
[6] Palou, L., Ali, A., Fallik, E. , & Romanazzi, G. (2016). GRAS, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biology and Technology, 122, 41-52. DOI: https://doi.org/10.1016/j.postharvbio.2016.04.017.
[7] Behbahani, B. A., Yazdi, F. T., Noorbakhsh, H., Riazi, F., Jajarmi, A. , & Yazdi, F. T. (2016). Study of the antibacterial activity of methanolic and aqueous extracts of Myrtus communis on pathogenic strains causing infection. Zahedan Journal of Research in Medical Sciences, 18(2), e5989. DOI: https://doi.org/10.17795/zjrms-5989.
[8] Alizadeh Behbahani, B. , & Imani Fooladi, A. A. (2018). Antibacterial activities, phytochemical analysis and chemical composition Makhlaseh extracts against the growth of some pathogenic strain causing poisoning and infection. Microbial Pathogenesis, 114, 204-208. DOI: https://doi.org/10.1016/j.micpath.2017.12.002.
[9] Tabatabaei Yazdi, F., Alizadeh Behbahani, B., Vasiee, A., Mortazavi, S. A. , & Yazdi, F. T. (2015). An investigation on the effect of alcoholic and aqueous extracts of Dorema aucheri (Bilhar) on some pathogenic bacteria in vitro. Archives of Advances in Biosciences, 6(1).
[10] Alizadeh Behbahani, B., Tabatabaei Yazdi, F., Shahidi, F. , & Mohebbi, M. (2012). Antimicrobial activity of Avicennia marina extracts ethanol, methanol & glycerin against Penicillium digitatum (citrus green mold). Scientific Journal of Microbiology, 1(7), 147-151.
[11] Noshad, M., Alizadeh Behbahani, B. , & Nikfarjam, Z. (2022). Chemical composition, antibacterial activity and antioxidant activity of Citrus bergamia essential oil: Molecular docking simulations. Food Bioscience, 50, 102123. DOI: https://doi.org/10.1016/j.fbio.2022.102123.
[12] Jalil Sarghaleh, S., Alizadeh Behbahani, B., Hojjati, M., Vasiee, A. , & Noshad, M. (2023). Evaluation of the constituent compounds, antioxidant, anticancer, and antimicrobial potential of Prangos ferulacea plant extract and its effect on Listeria monocytogenes virulence gene expression. Frontiers in Microbiology, 14. DOI: https://doi.org/10.3389/fmicb.2023.1202228.
[13] Shirani, K., Falah, F., Vasiee, A., Yazdi, F. T., Behbahani, B. A. , & Zanganeh, H. (2022). Effects of incorporation of Echinops setifer extract on quality, functionality, and viability of strains in probiotic yogurt. Journal of Food Measurement and Characterization, 16(4), 2899-2907.
[14] Ahmad Nejhad, A., Alizadeh Behbahani, B., Hojjati, M., Vasiee, A. , & Mehrnia, M. A. (2023). Identification of phytochemical, antioxidant, anticancer and antimicrobial potential of Calotropis procera leaf aqueous extract. Scientific Reports, 13(1), 14716. DOI: 10.1038/s41598-023-42086-1.
[15] Bahmanzadegan, A., Zareiyan, F., Rowshan, V., Hatami, A. , & Habibian, M. R. (2023). Chemical Composition and Antioxidant Activity of Essential Oil from Lavandula sublepidota. Chemistry of Natural Compounds, 59(3), 578-581. DOI: 10.1007/s10600-023-04059-8.
[16] Heydari, S., Jooyandeh, H., Alizadeh behbahani, B. , & Noshad, M. (2019). Invitro Determination of Chemical Compounds and Antibacterial Activity of Lavandula Essential oil against some Pathogenic Microorganisms. Journal of Ilam University of Medical Sciences, 27(4), 77-89. DOI: 10.29252/sjimu.27.4.77.
[17] Yazdi, F. T., Behbahani, B. A. , & Mortazavi, A. (2014). Investigating the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the Lavandula stoechas L. and Rosmarinus officinalis L. extracts on pathogen bacterias “in vitro”. Archives of Advances in Biosciences, 5(2).
[18] Caprari, C., Fantasma, F., Monaco, P., Divino, F., Iorizzi, M., Ranalli, G., Fasano, F. , & Saviano, G. (2023). Chemical Profiles, In Vitro Antioxidant and Antifungal Activity of Four Different Lavandula angustifolia L. EOs. Molecules, 28(1). DOI: 10.3390/molecules28010392.
[19] D'Auria, F. D., Tecca, M., Strippoli, V., Salvatore, G., Battinelli, L. , & Mazzanti, G. (2005). Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form. Medical Mycology, 43(5), 391-396. DOI: 10.1080/13693780400004810.
[20] Zuzarte, M., Gonçalves, M. J., Cruz, M. T., Cavaleiro, C., Canhoto, J., Vaz, S., Pinto, E. , & Salgueiro, L. (2012). Lavandula luisieri essential oil as a source of antifungal drugs. Food Chemistry, 135(3), 1505-1510. DOI: https://doi.org/10.1016/j.foodchem.2012.05.090.
[21] Zuzarte, M., Vale-Silva, L., Gonçalves, M. J., Cavaleiro, C., Vaz, S., Canhoto, J., Pinto, E. , & Salgueiro, L. (2012). Antifungal activity of phenolic-rich Lavandula multifida L. essential oil. European Journal of Clinical Microbiology & Infectious Diseases, 31(7), 1359-1366. DOI: 10.1007/s10096-011-1450-4.
[22] Rahmati-Joneidabad, M. , & Jooyandeh, H. (2023). Evaluation of the effect of edible coating based on Lepidium sativum seed mucilage in combination with Cinnamomum zeylanicum essential oil on increasing the shelf life of strawberries. Iranian Journal of Food Sciences and Industries, 20(139).
[23] Khalifa, I., Barakat, H., El-Mansy, H. A. , & Soliman, S. A. (2016). Improving the shelf-life stability of apple and strawberry fruits applying chitosan-incorporated olive oil processing residues coating. Food Packaging and Shelf Life, 9, 10-19. DOI: https://doi.org/10.1016/j.fpsl.2016.05.006.
[24] Shankar, S., Khodaei, D. , & Lacroix, M. (2021). Effect of chitosan/essential oils/silver nanoparticles composite films packaging and gamma irradiation on shelf life of strawberries. Food Hydrocolloids, 117, 106750. DOI: https://doi.org/10.1016/j.foodhyd.2021.106750.
[25] Keivanfar, L., Nateghi, L., Rashidi, L., Pourahmad, R. , & Rashidi Nodeh, H. (2023). Comparing two different extraction techniques on chemical composition and antioxidant property of three essential oils of Ferulago contracta, Rosmarinus officinalis and Lavendula sublepoidota. Journal of Food Measurement and Characterization, 17(4), 3579-3591. DOI: 10.1007/s11694-023-01859-y.
[26] Rahmati-Joneidabad, M., Zare-Bavani, M. R. , & Borna, F. (2024). Evaluation of the chemical characteristics and control of the growth of spoilage fungi causing rot in grape fruit using ginger essential oil (Zingiber officinale). Journal of Food Science and Technology, 21(154), 151-162. DOI: 10.22034/FSCT.21.154.151.
[27] Rahmati-Joneidabad, M., Alizadeh Behbahani, B. , & Noshad, M. (2022). Evaluation of total phenols and flavonoids, antioxidant power, and antimicrobial activity of Levisticum officinale Koch essential oil against some spoilage fungi causing apple and orange rot. Iranian Food Science and Technology Research Journal, 18(5), 699-709. DOI: 10.22067/ifstrj.2022.74735.1136.
[28] Rahmati-Joneidabad, M., Alizadeh Behbahani, B. , & Noshad, M. (2023). Investigation of Chemical Properties of Green Tea Ethanolic Extract and Its Inhibitory and Lethal Effects on Aspergillus niger, Botrytis cinerea and Rhizopus stolonifer (Causing Rot in Strawberry and Grapes). Iranian Food Science and Technology Research Journal, 19(4), 477-489. DOI: 10.22067/ifstrj.2022.76184.1163.
[29] Verma, R. S., Rahman, L. U., Chanotiya, C. S., Verma, R. K., Chauhan, A., Yadav, A., Singh, A. , & Yadav, A. K. (2010). Essential oil composition of Lavandula angustifolia Mill. cultivated in the mid hills of Uttarakhand, India. Journal of the serbian chemical society, 75(3), 343-348. DOI: https://doi.org/10.2298/JSC090616015V.
[30] Hanamanthagouda, M. S., Kakkalameli, S. B., Naik, P. M., Nagella, P., Seetharamareddy, H. R. , & Murthy, H. N. (2010). Essential oils of Lavandula bipinnata and their antimicrobial activities. Food Chemistry, 118(3), 836-839. DOI: https://doi.org/10.1016/j.foodchem.2009.05.032.
[31] Alizadeh Behbahani, B., Falah, F., Lavi Arab, F., Vasiee, M. , & Tabatabaee Yazdi, F. (2020). Chemical composition and antioxidant, antimicrobial, and antiproliferative activities of Cinnamomum zeylanicum bark essential oil. Evidence‐Based Complementary and Alternative Medicine, 2020(1), 5190603.
[32] Robu, S., Aprotosoaie, A. C., Miron, A., Cioancă, O., Stănescu, U. , & Hăncianu, M. (2012). In vitro antioxidant activity of ethanolic extracts from some Lavandula species cultivated in Romania. cell, 60(3), 394-401.
[33] Afoulous, S., Ferhout, H., Raoelison, E. G., Valentin, A., Moukarzel, B., Couderc, F. , & Bouajila, J. (2013). Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei. Food and chemical toxicology, 56, 352-362.
[34] Pateiro, M., Barba, F. J., Domínguez, R., Sant'Ana, A. S., Mousavi Khaneghah, A., Gavahian, M., Gómez, B. , & Lorenzo, J. M. (2018). Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Research International, 113, 156-166. DOI: https://doi.org/10.1016/j.foodres.2018.07.014.
[35] Dhanani, T., Shah, S., Gajbhiye, N. A. , & Kumar, S. (2017). Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arabian Journal of Chemistry, 10, S1193-S1199. DOI: https://doi.org/10.1016/j.arabjc.2013.02.015.
[36] Li, Y., Tan, B., Cen, Z., Fu, Y., Zhu, X., He, H., Kong, D. , & Wu, H. (2021). The variation in essential oils composition, phenolic acids and flavonoids is correlated with changes in antioxidant activity during Cinnamomum loureirii bark growth. Arabian Journal of Chemistry, 14(8), 103249. DOI: https://doi.org/10.1016/j.arabjc.2021.103249.
[37] Alizadeh Behbahani, B., Falah, F., Vasiee, A. , & Tabatabaee Yazdi, F. (2021). Control of microbial growth and lipid oxidation in beef using a Lepidium perfoliatum seed mucilage edible coating incorporated with chicory essential oil. Food science & nutrition, 9(5), 2458-2467.
[38] Behbahani, B. A., Shahidi, F., Yazdi, F. T., Mortazavi, S. A. , & Mohebbi, M. (2017). Antioxidant activity and antimicrobial effect of tarragon (Artemisia dracunculus) extract and chemical composition of its essential oil. Journal of Food Measurement and Characterization, 11(2), 847-863. DOI: 10.1007/s11694-016-9456-3.
[39] Mazraeh, A., Tavallali, H. , & Tavallali, V. (2024). Variations in the biochemical characteristics of Lavandula sublepidota Rech.f. in response to the foliar enrichment of green-synthesized copper nano complexes from extract of neem and jujube. Plant Physiology and Biochemistry, 214, 108885. DOI: https://doi.org/10.1016/j.plaphy.2024.108885.
[40] Yammine, J., Chihib, N.-E., Gharsallaoui, A., Dumas, E., Ismail, A. , & Karam, L. (2022). Essential oils and their active components applied as: free, encapsulated and in hurdle technology to fight microbial contaminations. A review. Heliyon, 8(12). DOI: 10.1016/j.heliyon.2022.e12472.
[41] Rahmati-Joneidabad, M. , & Alizadeh Behbahani, B. (2021). Identification of chemical compounds, antioxidant potential, and antifungal activity of (Thymus daenensis) essential oil against spoilage fungi causing apple rot. Iranian Food Science and Technology Research Journal, 17(5), 691-700. DOI: 10.22067/ifstrj.v18i1.87595.
[42] Ciocarlan, A., Dragalin, I., Aricu, A., Lupaşcu, L., Ciocarlan, N. , & Popescu, V. (2018). Chemical composition and antimicrobial activity of the Levisticum officinale WDJ Koch essential oil. Chemistry Journal of Moldova, 13(2), 63-68. DOI: https://doi.org/10.19261/cjm.2018.514.