مجله علوم و صنایع غذایی ایران

مجله علوم و صنایع غذایی ایران

ارزیابی قدرت مهارکنندگی عصاره ریزپوشانی شده جلبک سارگاسوم بر اکسیداسیون چربی‌ها در روغن ماهی و میکروارگانیسم‌های پاتوژن

نوع مقاله : پژوهشی اصیل

نویسندگان
1 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، سازمان تحقیقات و آموزش جهاد کشاورزی، شیراز، ایران
2 گروه کشاورزی، مجتمع آموزش عالی میناب، دانشگاه هرمزگان، بندرعباس، ایران
3 گروه علوم و مهندسی صنایع غذایی، مؤسسه آموزش عالی خرد، بوشهر، ایران
10.48311/fsct.2026.84059.0
چکیده
در این پژوهش ترکیب بهینه عصاره ریزپوشانی شده جلبک سارگاسوم جهت بهبود پایداری اکسیداتیو روغن ماهی و استفاده به عنوان ترکیب ضد میکروبی مورد بررسی قرار گرفت. با توجه به حساسیت اکسیداتیو روغن ماهی به دلیل ترکیب اسیدچرب خاصی که دارد، استفاده از آنتی‌اکسیدان جهت افزایش مدت ماندگاری آن اجتناب‌ناپذیر است. عصاره ریزپوشانی شده، عصاره خالص و آنتی‌اکسیدان سنتزی (TBHQ) در سه غلظت 0، 25/1 و 5/2 درصد به روغن ماهی افزوده شد و در بازه زمانی 15 روزه مورد بررسی قرار گرفت. از روش سطح پاسخ جهت ارزیابی تاثیر متغیرهای مستقل بر میزان پراکسید و آنیزیدین به عنوان شاخص‌های اکسیداسیون و بهینه‌سازی فرایند استفاده شد. با افزایش زمان ماندگاری میزان اکسیداسیون افزایش و با افزایش غلظت میزان شاخص‌های مورد بررسی کاهش یافت. در انتخاب تیمار بهینه نیز عصاره ریزپوشانی شده جلبک و آنتی‌اکسیدان سنتزی در غلظت 5/2 درصد و زمان 15 روز بهترین شرایط پیشنهادی بودند. همچنین با بررسی اثرات ضدمیکروبی تیمارهای ریزپوشانی شده مشخص شد تیمارهای تهیه شده با ترکیب دیواره کیتوزان و پس از آن تیمار با ترکیب دیواره پروتئین آب پنیر و مالتودکسترین با نسبت 50:50 بیشترین قابلیت ضدمیکروبی را بر علیه باکتری­های بیماری­زای مورد بررسی از خود بروز دادند به گونه­ای که می­توان از این تیمارها به منظور تهیه آنتی بیوتیک­های استاندارد جایگزین بهره جست.
 
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Inhibitory effects of capsulated Sargassum ilicifolium extract on lipid oxidation in fish oil and pathogenic microorganisms

نویسندگان English

Seyed Saeed Sekhavatizadeh 1
mohammad ganje 2
Seyedeh Sedigheh Hashemi 3
MOHAMMADREZA MOZAFARYAN 3
1 Food science and technology Dep. Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Fars, Iran
2 Department of Agriculture, Minab Higher Education center, University of Hormozgan, Bandar Abbas, Iran
3 Department of Food Science and Technology, Kherad Institute of Higher Education, Bushehr, Iran
چکیده English

This research investigates the optimal formulation of microencapsulated Sargassum algae extract to improve the oxidative stability of fish oil and its potential use as an antimicrobial agent. Given the oxidative sensitivity of fish oil due to its specific fatty acid composition, the use of antioxidants is essential to increase its shelf life. Microencapsulated extract, pure extract, and a synthetic antioxidant (TBHQ) were added to fish oil at three concentrations: 0, 1.25, and 2.5 percent, and examined over a 15-day period. Response surface methodology was used to evaluate the effect of independent variables on peroxide and anisidine values as oxidation indices and to optimize the process. Oxidation increased with increasing storage time, while the values of the indices decreased with increasing concentration. For selecting the optimal treatment, microencapsulated algae extract and synthetic antioxidant at a concentration of 2.5% and a time of 15 days were the best suggested conditions. Furthermore, investigation of the antimicrobial effects of the microencapsulated treatments revealed that the treatments prepared with a chitosan wall composition, followed by the treatment with a wall composition of whey protein and maltodextrin at a 50:50 ratio, exhibited the highest antimicrobial activity against the pathogenic bacteria tested, suggesting that these treatments could be used to prepare alternative to standard antibiotics.
 

کلیدواژه‌ها English

Microencapsulation
Antioxidant
Antimicrobial
Pathogens
[1]       Liguori, J., et al., How do food safety concerns affect consumer behaviors and diets in low-and middle-income countries? A systematic review. Global Food Security, 2022. 32: p. 100606.
[2]       Caleja, C., et al., A comparative study between natural and synthetic antioxidants: Evaluation of their performance after incorporation into biscuits. Food chemistry, 2017. 216: p. 342-346.
[3]       Mansuri, S., et al., Evaluating the physicochemical properties of camelina (Camelina sativa) seed oil obtained through optimized ultrasonic-assisted extraction. Ultrasonics Sonochemistry, 2025. 118: p. 107371.
[4]       Xu, M., et al., Effects of resveratrol on lipid and protein co-oxidation in fish oil-enriched whey protein isolate emulsions. Food Chemistry, 2021. 365: p. 130525.
[5]       Cugno, C., et al., Omega-3 fatty acid-rich fish oil supplementation prevents rosiglitazone-induced osteopenia in aging C57BL/6 mice and in vitro studies. Scientific reports, 2021. 11(1): p. 10364.
[6]       Hrebień‐Filisińska, A., Application of natural antioxidants in the oxidative stabilization of fish oils: A mini‐review. Journal of Food Processing and Preservation, 2021. 45(4): p. e15342.
[7]       Bakhshabadi, H., et al., A review of new methods for extracting oil from plants to enhance the efficiency and physicochemical properties of the extracted oils. Processes, 2025. 13(4): p. 1124.
Ren, Y., et al., Carotenoid production from microalgae: biosynthesis, salinity responses and novel biotechnologies. Marine Drugs, 2021. 19(12): p. 713.
[8]       Chen, Z., et al., Recent advances of natural pigments from algae. Food Production, Processing and Nutrition, 2023. 5(1): p. 39.
[9]       Sanger, G., et al. Pigments constituents, phenolic content and antioxidant activity of brown seaweed Sargassum sp. in IOP conference series: earth and environmental science. 2022. IOP Publishing.
[10]    Jafari, S.M., et al., Improving the storage stability of tomato paste by the addition of encapsulated olive leaf phenolics and experimental growth modeling of A. flavus. International Journal of Food Microbiology, 2021. 338: p. 109018.
[11]    Ganje, M., et al., Effect of encapsulation of Lactobacillus reuteri (ATCC 23272) in sodium alginate and tomato seed mucilage on properties of ketchup sauce. Carbohydrate Polymer Technologies and Applications, 2024. 7: p. 100486.
[12]    Ganjeh, M., et al., Modeling corrosion trends in tin‐free steel and tinplate cans containing tomato paste via adaptive‐network‐based fuzzy inference system. Journal of Food Process Engineering, 2017. 40(6): p. e12580.
[13]    Du, X., et al., Mapping mineral prospectivity using a hybrid genetic algorithm–support vector machine (GA–SVM) model. ISPRS International Journal of Geo-Information, 2021. 10(11): p. 766.
[14]    Ganjeh, M., et al., Modeling the drying kinetics of onion in a fluidized bed drier equipped with a moisture controller using regression, fuzzy logic and artificial neural networks methods. 2013.
[15]    Taheri, A., et al., Complexation of cress seed mucilage and β-lactoglobulin; optimization through response surface methodology and adaptive neuro-fuzzy inference system (ANFIS). Chemometrics and Intelligent Laboratory Systems, 2022. 228: p. 104615.
[16]    Sekhavatizadeh, S.S., et al., Encapsulation of bioactive compounds from Sargassum ilicifolium: Influence of wall material type and loading content on the physicochemical and structural properties of microparticles. Heliyon, 2025. 11(1).
[17]    Wang, Y., et al., Micro-encapsulation and stabilization of DHA containing fish oil in protein-based emulsion through mono-disperse droplet spray dryer. Journal of Food Engineering, 2016. 175: p. 74-84.
[18]    Razghandi, E., et al., Application of pulsed electric field‐ultrasound technique for antioxidant extraction from yarrow: ANFIS modeling and evaluation of antioxidant activity. Journal of Food Processing and Preservation, 2024. 2024(1): p. 2951718.
[19]    Nasrin, T.A.A. and A.K. Anal, Enhanced oxidative stability of fish oil by encapsulating in culled banana resistant starch-soy protein isolate based microcapsules in functional bakery products. Journal of Food Science and Technology, 2015. 52: p. 5120-5128.
[20]    Ambrosio, C.M., et al., Microencapsulation enhances the in vitro antibacterial activity of a citrus essential oil. Journal of Essential Oil Bearing Plants, 2020. 23(5): p. 985-997.
[21]    Roudi, A.M., et al., Response surface methodology (RSM)-based prediction and optimization of the Fenton process in landfill leachate decolorization. Processes, 2021. 9(12): p. 2284.
[22]    Machado, M., et al., Vegetable oils oxidation: mechanisms, consequences and protective strategies. Food Reviews International, 2023. 39(7): p. 4180-4197.
[23]    Qin, K., D. Zang, and Y. Wei, Polyoxometalates based compounds for green synthesis of aldehydes and ketones. Chinese Chemical Letters, 2023. 34(8): p. 107999.
[24]    Selim, K.A., et al., The effect of wall material type on the encapsulation efficiency and oxidative stability of fish oils. Molecules, 2021. 26(20): p. 6109.
[25]    Cho, S.-h., et al., The antioxidant properties of brown seaweed (Sargassum siliquastrum) extracts. Journal of medicinal food, 2007. 10(3): p. 479-485.
[26]    Husni, A., et al., Characteristics and antioxidant activity of fucoidan from Sargassum hystrix: Effect of extraction method. International journal of food science, 2022. 2022(1): p. 3689724.
[27]    He, D. and L. Liu, Analytical aspects of rice bran oil, in Rice bran and rice bran oil. 2019, Elsevier. p. 169-181.
[28]    Heo, S.-J., Antioxidant activity of enzymatic extracts from brown seaweeds. 2003, 제주대학교 대학원.
[29]    Shepherd, R., A. Robertson, and D. Ofman, Dairy glycoconjugate emulsifiers: Casein–maltodextrins. Food Hydrocolloids, 2000. 14(4): p. 281-286.
[30]    Zuorro, A., et al., Natural antimicrobial agents from algae: Current advances and future directions. International Journal of Molecular Sciences, 2024. 25(21): p. 11826.
[31]    Helal, M.A., et al., Biochemical composition and bioactivity of the crude extract of Sargassum dentifolium (turner) C. Agardh, of Western coast of the Red Sea, Hurghada, Egypt. Biomass Conversion and Biorefinery, 2024. 14(20): p. 1-20.
[32]    Jamili, S., Antimicrobial activity of various extracts of Sargassum glaucescens on the antibiotic resistant organisms. Iranian Journal of Fisheries Sciences, 2020. 19(3): p. 1359-1372.
[33]    Dutta, P., et al., Perspectives for chitosan based antimicrobial films in food applications. Food chemistry, 2009. 114(4): p. 1173-1182.
[34]    Elsherif, W.M., G.M. Zayed, and A.O. Tolba, Antimicrobial activity of chitosan-edible films containing a combination of carvacrol and rosemary nano-emulsion against Salmonella enterica serovar Typhimurium and Listeria monocytogenes for ground meat. International Journal of Food Microbiology, 2024. 418: p. 110713.
[35]    Kumar, S., A. Mukherjee, and J. Dutta, Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends in Food Science & Technology, 2020. 97: p. 196-209.
[36]    Sharma, S., et al., Chitosan-Based Films for Food Packaging Applications, in Functional Nanomaterials and Nanocomposites for Biodegradable Food Packaging. 2025, Springer. p. 151-170.
[37]    Gohargani, M., A. Shirazinejad, and H. Lashkari, The effect of chitosan-whey protein based edible coating containing bionanocomposite material and Zataria multiflora essential oil on UF-Feta type cheese shelf life. 2021.
[38]    Breijyeh, Z., B. Jubeh, and R. Karaman, Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules, 2020. 25(6): p. 1340.