مجله علوم و صنایع غذایی ایران

مجله علوم و صنایع غذایی ایران

بررسی ویژگی‌های فیزیکوشیمیایی روغن دانه گوجه فرنگی پیش تیمار شده با امواج مایکروویو

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشگاه بوعلی سینا
2 دانشگاه بوعلی سینا همدان
10.48311/fsct.2026.84021.0
چکیده
دانه­های گوجه­فرنگی به روش رسوبی از تفاله جدا و خشک گردیدند. پیش­تیمار دانه­ها با امواج  مایکرویوو (0، 200 و 500 وات) طی زمان­های مختلف (0، 1، 3 و 5 دقیقه) انجام شد. روغن دانه­ها با روش سوکسله و پرس (سرعت 20 دور در دقیقه) استخراج گردید. برخی ویژگی­های فیزیکی (بازده استخراج، ضریب شکست، مولفه­های رنگی، شاخص زردی و ویسکوزیته) و شیمیایی (عدد پراکسید و عدد اسیدی) روغن استحصالی، ارزیابی گردید. پروفایل اسید­های چرب روغن با دستگاه کروماتوگرافی گازی تعیین گردید. تجزیه و تحلیل داده‌ها بر اساس آزمایش فاکتوریل در قالب طرح آماری کاملاً تصادفی در سه تکرار انجام شد. بازده استخراج روغن در روش سوکسله (95/25 درصد) در مقایسه با پرس (15/21درصد) به شکل معنی­داری بیشتر بود (05/0p<). مولفه روشنایی رنگ روغن دانه گوجه فرنگی استخراج شده با روش پرس (16/91) در مقایسه با سوکسله (47/84) بیشتر بود. مولفه زردی (86/58) و شاخص زردی (25/92) رنگ روغن روغن دانه گوجه فرنگی استخراج شده با روش پرس در مقایسه با سوکسله (مولفه زردی  67/66 و شاخص زردی 15/110) بیشتر بود (05/0p<). ویسکوزیته روغن دانه گوجه فرنگی استخراج شده با روش سوکسله (90/46 سنتی پواز) در مقایسه با پرس (66/50 سنتی پواز) بیشتر بود (05/0p<). افزایش توان (500 وات) و زمان (5 دقیقه) پیش­تیمار مایکروویو در هر دو روش استخراج (سوکسله یا پرس)، بازده استخراج، ویسکوزیته و زردی روغن را افزایش و روشنایی آن را کاهش داد (05/0p<). بیشترین راندمان استخراج روغن از دانه گوجه فرنگی (6/35 %) با روش سوکسله و به کمک پیش تیمار مایکروویو دانه‌ها با توان 500 وات و طی 5 دقیقه حاصل شد.  کیفیت روغن دانه گوجه­فرنگی بدون پیش تیمار و استخراج شده با دو روش پرس وسوکسله و پس از پیش­تیمار دانه­ها با امواج مایکروویو (توان 500 وات طی 5 دقیقه) از نظر عدد پراکسید و اسیدی در محدوده مصرف مجاز استاندارد بود.      
 
  
 
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of physicochemical properties of tomato seed oil pretreated with microwaves

نویسندگان English

Zahra Mamivand 1
aryou emamifar 2
Mostafa Karami 1
Fakhreddin Salehi 1
1 Bu-Ali Sina University
2 Bu-Ali Sina University
چکیده English

Tomato seeds were separated from the pulp by sedimentation method and dried. The seeds were treated with microwaves using various power levels (0, 200 and 500 W) and process times (0, 1, 3 and 5 minutes). Seed oil was extracted by Soxhlet and press (20 rpm) methods. The effectiveness of microwave-assisted extraction of tomato seed oil was evaluated based on some physical (oil yield, refractive index, color indexes, yellowness index and viscosity) and chemical (peroxide value and acid value) properties of oil samples. Fatty acids composition of oils was determined by gas chromatography. The data were analyzed with factorial treatment structure in a Completely Randomized Design in three replications. The oil yield of tomato seed extracted using Soxhlet (25.95%) was higher than that of press method (21.15%) (p<0.05). The L value (91.16) of oil obtained by press method was higher than that of Soxhlet (86.47). However, the b-value (58.86) and yellowing index (92.25) of oil obtained by the pressing method were lower than those obtained by the Soxhlet (66.67 and 110.15, respectively). The average viscosity of oil extracted by the Soxhlet method (46.90 centipoise) was lower than that of the pressing (50.66 centipoise). Increasing the microwave power (from 200 to 500 W) and processing time (from 0 to 5 minutes) of tomato seeds in both Soxhlet and press extraction methods increased the yield of extract, viscosity and yellowness and decreased the L value of oil (p<0.05). The highest oil yield (35.6%) was obtained with the microwave-assisted Soxhlet extraction method at a power of 500 W and a duration of 5 minutes. The quality of the tomato seed extracted oil by two methods of pressing and Soxhlet and following microwave pretreatment seeds (500 W for 5 min) in terms of peroxide and acid value was in the standard range recommended.

 

کلیدواژه‌ها English

Tomato seed oil
Microwave pretreatment
Physicochemical properties
[1] Lasekan, A., Bakar, F. A., & Hashim, D. (2013). Potential of chicken by-products as sources of useful biological resources. Waste management, 33(3), 552-565.
[2] Fatima, S., Mir, M. I., Khan, M. R., Sayyed, R. Z., Mehnaz, S., Abbas, S., ... & Masih, R. (2022). The optimization of gelatin extraction from chicken feet and the development of gelatin based active packaging for the shelf-life extension of fresh grapes. Sustainability, 14(13), 7881.
[3] Mokrejš, P., Mrázek, P., Gál, R., & Pavlačková, J. (2019). Biotechnological preparation of gelatines from chicken feet. Polymers, 11(6), 1060.
[4] Kaewdang, O., Benjakul, S., Kaewmanee, T., & Kishimura, H. (2014). Characteristics of collagens from the swim bladders of yellowfin tuna (Thunnus albacares). Food Chemistry, 155, 264-270.
[5] Shahidi, F., & Botta, J. R. (2012). Seafoods: chemistry, processing technology and quality. Springer Science & Business Media.
[6] Nik Aisyah, N. M., Nurul, H., Azhar, M. E., & Fazilah, A. (2014). Poultry as an alternative source of gelatin. Health and the Environment Journal, 5(1), 37-49.
[7] Bichukale, A. D., Koli, J. M., Sonavane, A. E., Vishwasrao, V. V., Pujari, K. H., & Shingare, P. E. (2018). Functional properties of gelatin extracted from poultry skin and bone waste. International Journal of Pure & Applied Bioscience, 6(4), 87-101.
[8] Gál, R., Mokrejš, P., Mrázek, P., Pavlačková, J., Janáčová, D., & Orsavová, J. (2020). Chicken heads as a promising by-product for preparation of food gelatins. Molecules, 25(3), 494.
[9] Gómez-Guillén, M. C., Giménez, B., López-Caballero, M. A., & Montero, M. P. (2011). Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food hydrocolloids, 25(8), 1813-1827.
[10] Abedinia, A., Nafchi, A. M., Sharifi, M., Ghalambor, P., Oladzadabbasabadi, N., Ariffin, F., & Huda, N. (2020). Poultry gelatin: Characteristics, developments, challenges, and future outlooks as a sustainable alternative for mammalian gelatin. Trends in Food Science & Technology, 104, 14-26.
[11] Damrongsakkul, S., Ratanathammapan, K., Komolpis, K., & Tanthapanichakoon, W. (2008). Enzymatic hydrolysis of rawhide using papain and neutrase. Journal of industrial and Engineering Chemistry, 14(2), 202-206.
[12] Sarbon, N. M., Badii, F., & Howell, N. K. (2015). The effect of chicken skin gelatin and whey protein interactions on rheological and thermal properties. Food Hydrocolloids, 45, 83-92.
[13] Liu, T., Dai, H., Ma, L., Yu, Y., Tang, M., Li, Y., ... & Zhang, Y. (2019). Structure of Hyla rabbit skin gelatin as affected by microwave-assisted extraction. International journal of food properties, 22(1), 1594-1607.
[14] Park, J. H., Choe, J. H., Kim, H. W., Hwang, K. E., Song, D. H., Yeo, E. J., ... & Kim, C. J. (2013). Effects of various extraction methods on quality characteristics of duck feet gelatin. Food Science of Animal Resources, 33(2), 162-169.
[15] Moret, S., Conchione, C., Srbinovska, A., & Lucci, P. (2019). Microwave-based technique for fast and reliable extraction of organic contaminants from food, with a special focus on hydrocarbon contaminants. Foods, 8(10), 503.
 [16] Sabzi, F., Varidi, M. J., Varidi, M., & Asnaashari, M. (2024). Effect of verjuice (Vitis vinifera L.) on physicochemical and textural properties of beef M. biceps femoris. Food Science & Nutrition, 12(8), 5497-5517.
[17] Erge, A., & Zorba, Ö. (2018). Optimization of gelatin extraction from chicken mechanically deboned meat residue using alkaline pre-treatment. Lwt, 97, 205-212.
 [18] Farahmandfar, R., Asnaashari, M., Amraie, M., & Salehi, M. (2019). Color and weight changes of fresh-cut banana slices coated by quince seed gum: Effect of concentration, storage temperature and duration. Iranian Food Science and Technology Research Journal, 14(6), 75-85.
[19] Aarahmandfar, R., Mohseni, M., & Asnaashari, M. (2017). Effects of quince seed, almond, and tragacanth gum coating on the banana slices properties during the process of hot air drying. Food science & nutrition, 5(6), 1057-1064.
 [20] Ma, M., Ma, L., Yu, W., Zhang, X., Shen, Y., & Zhang, Y. (2018). Research on rapid gelatinization of rabbit skin collagen as effect of acid treatment. Food Hydrocolloids, 77, 945-951.
 [21] Hao, S., Li, L., Yang, X., Cen, J., Shi, H., Bo, Q., & He, J. (2009). The characteristics of gelatin extracted from sturgeon (Acipenser baeri) skin using various pretreatments. Food Chemistry, 115(1), 124-128.
 [22] Chakka, A. K., Muhammed, A., Sakhare, P. Z., & Bhaskar, N. (2017). Poultry processing waste as an alternative source for mammalian gelatin: Extraction and characterization of gelatin from chicken feet using food grade acids. Waste and Biomass Valorization, 8, 2583-2593.
 [23] Choe, J., & Kim, H. Y. (2018). Effects of chicken feet gelatin extracted at different temperatures and wheat fiber with different particle sizes on the physicochemical properties of gels. Poultry Science, 97(3), 1082-1088.
 [24] Benjakul, S., Thiansilakul, Y., Visessanguan, W., Roytrakul, S., Kishimura, H., Prodpran, T., & Meesane, J. (2010). Extraction and characterisation of pepsin‐solubilised collagens from the skin of bigeye snapper (Priacanthus tayenus and Priacanthus macracanthus). Journal of the Science of Food and Agriculture, 90(1), 132-138.
 [25] Cao, S., Wang, Y., Xing, L., Zhang, W., & Zhou, G. (2020). Structure and physical properties of gelatin from bovine bone collagen influenced by acid pretreatment and pepsin. Food and Bioproducts Processing, 121, 213-223.
 [26] Aykın-Dinçer, E., Koç, A., & Erbaş, M. U. S. T. A. F. A. (2017). Extraction and physicochemical characterization of broiler (Gallus gallus domesticus) skin gelatin compared to commercial bovine gelatin. Poultry Science, 96(11), 4124-4131.
 [27] Sae‐Leaw, T., Benjakul, S., & O'Brien, N. M. (2016). Effect of pretreatments and defatting of seabass skins on properties and fishy odor of gelatin. Journal of Food Biochemistry, 40(6), 741-753.
 [28] Badii, F., & Howell, N. K. (2006). Fish gelatin: structure, gelling properties and interaction with egg albumen proteins. Food hydrocolloids, 20(5), 630-640.
 [29] Ahmad, M., & Benjakul, S. (2011). Characteristics of gelatin from the skin of unicorn leatherjacket (Aluterus monoceros) as influenced by acid pretreatment and extraction time. Food Hydrocolloids, 25(3), 381-388.
 [30] Li, S., Zeng, W., Li, R., Hoffman, L. C., He, Z., Sun, Q., & Li, H. (2018). Rabbit meat production and processing in China. Meat science, 145, 320-328.
 [31] Kim, T. K., Ham, Y. K., Shin, D. M., Kim, H. W., Jang, H. W., Kim, Y. B., & Choi, Y. S. (2020). Extraction of crude gelatin from duck skin: effects of heating methods on gelatin yield. Poultry science, 99(1), 590-596.
 [32] Feng, X., Dai, H., Ma, L., Fu, Y., Yu, Y., Zhu, H., ... & Zhang, Y. (2021). Effect of microwave extraction temperature on the chemical structure and oil-water interface properties of fish skin gelatin. Innovative Food Science & Emerging Technologies, 74, 102835.
 [33] Duan, R., Zhang, J., Liu, L., Cui, W., & Regenstein, J. M. (2018). The functional properties and application of gelatin derived from the skin of channel catfish (Ictalurus punctatus). Food chemistry, 239, 464-469.
 [34] Balti, R., Jridi, M., Sila, A., Souissi, N., Nedjar-Arroume, N., Guillochon, D., & Nasri, M. (2011). Extraction and functional properties of gelatin from the skin of cuttlefish (Sepia officinalis) using smooth hound crude acid protease-aided process. Food Hydrocolloids, 25(5), 943-950.
 [35] Kittiphattanabawon, P., Benjakul, S., Visessanguan, W., & Shahidi, F. (2010). Comparative study on characteristics of gelatin from the skins of brownbanded bamboo shark and blacktip shark as affected by extraction conditions. Food hydrocolloids, 24(2-3), 164-171.
 [36] Muyonga, J. H., Cole, C. G. B., & Duodu, K. G. (2004). Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food chemistry, 86(3), 325-332.
 [37] Guo, L., Harnedy, P. A., Zhang, L., Li, B., Zhang, Z., Hou, H., ... & FitzGerald, R. J. (2015). In vitro assessment of the multifunctional bioactive potential of Alaska pollock skin collagen following simulated gastrointestinal digestion. Journal of the Science of Food and Agriculture, 95(7), 1514-1520.
 [38] Sántiz-Gómez, M. A., Mazorra-Manzano, M. A., Ramírez-Guerra, H. E., Scheuren-Acevedo, S. M., Navarro-García, G., Pacheco-Aguilar, R., & Ramírez-Suárez, J. C. (2019). Effect of acid treatment on extraction yield and gel strength of gelatin from whiptail stingray (Dasyatis brevis) skin. Food Science and Biotechnology, 28, 751-757.
 [39] Kanwate, B. W., & Kudre, T. G. (2017). Effect of various acids on physicochemical and functional characteristics of gelatin from swim bladder of rohu (Labeo rohita). Journal of Food Science and Technology, 54, 2540-2550.
[40] Usman, M., Sahar, A., Aadil, R. M., & Shahid, M. (2024). Extraction and physicochemical characterization of native and broiler chicken feet gelatin. Journal of the Science of Food and Agriculture, 104(14), 8939-8944.
[41] Shyni, K., Hema, G. S., Ninan, G., Mathew, S., Joshy, C. G., & Lakshmanan, P. T. (2014). Isolation and characterization of gelatin from the skins of skipjack tuna (Katsuwonus pelamis), dog shark (Scoliodon sorrakowah), and rohu (Labeo rohita). Food hydrocolloids, 39, 68-76.
 [42] Ab Rahim, H., Ahmad, H., & Ab Rahim, M. H. (2021). Extraction of Gelatin from Different Parts of Gallus Gallus Domesticus. Current Science and Technology, 1(1), 50-55.
 [43] Widyasari, R., & Rawdkuen, S. (2014). Extraction and characterization of gelatin from chicken feet by acid and ultrasound assisted extraction. Food and Applied Bioscience Journal, 2(1), 85-97.
 [44] Rahman, M. N. A., & Jamalulail, S. A. S. K. A. (2012). Extraction, physicochemical characterizations and sensory quality of chicken feet gelatin. Borneo Science, 30, 1-13.
 [45] Al-Hassan, A. A. (2020). Gelatin from camel skins: Extraction and characterizations. Food Hydrocolloids, 101, 105457.
 [46] da Almeida, P. F., da Silva Lannes, S. C., Calarge, F. A., da Brito Farias, T. M., & Santana, J. C. C. (2012). FTIR characterization of gelatin from chicken feet. Journal of chemistry and chemical engineering, 6(11), 1029.