مجله علوم و صنایع غذایی ایران

مجله علوم و صنایع غذایی ایران

مدل سازی و بهینه یابی فرآیندهای مختلف استخراج ژلاتین پای مرغ با روش سطح پاسخ

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
2 بخش تحقیقات فراوری تولیدات دامی، موسسه تحقیقات علوم دامی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران
10.48311/fsct.2026.84003.0
چکیده
مصرف فرآورده­های جانبی حیوانی در دهه­های اخیر رشد چشمگیری داشته است. این فرآورده­ها می­توانند به محصولات پایداری جهت مصارف کشاورزی و صنعتی تبدیل شوند. یکی از این محصولات پایدار، ژلاتین است. در بین ضایعات کشتارگاهی طیور، پای مرغ منبع خوبی برای تولید ژلاتین می­باشد ولی مطالعات محدودی در مورد آن وجود دارد. در این تحقیق، به منظور تعیین شرایط بهینه استخراج ژلاتین از پای مرغ به ترتیب اثر چهار متغیر غلظت اسید سولفوریک (1 تا 3 نرمال)، نسبت وزن پای مرغ خمیر شده به محلول اسیدی (1: 2-6 وزنی/حجمی)، دمای (60 تا 90 درجه سلسیوس) و زمان استخراج (1 تا 5 ساعت) به روش اسیدی و سه متغیر غلظت اسید سولفوریک (1 تا 3 نرمال)، توان (360 تا 720 وات) و زمان مایکرویو (10 تا 20 دقیقه) به روش مایکروویو بر بازده و قدرت ژل مورد بررسی قرار گرفت. نتایج آزمایش­ها با استفاده از روش طرح مرکب مرکزی سطح پاسخ تجزیه و تحلیل گردید. مدل­های درجه دوم پیشنهادی برای بازده استخراج و قدرت ژل در روش­های اسیدی و مایکروویو، R2 و Adj-R2 بالا و عدم برازش بی­معنی داشتند، لذا به خوبی توانستند پاسخ­ها را پیش­بینی کنند. شرایط بهینه استخراج اسیدی در حداکثر بازده و قدرت ژل به ترتیب دمای40/76 درجه سلسیوس، زمان 3 ساعت، غلظت 2 نرمال اسید و نسبت وزن پای مرغ خمیرشده به محلول اسیدی 4:1 وزنی/حجمی مشخص گردید. نتایج آماری حاصل از آنالیز واریانس فرآیند استخراج به کمک مایکروویو در غلظت 2 نرمال اسید، توان 540 وات و زمان 20 دقیقه بالاترین بازده و قدرت ژل را به دنبال داشت. سپس، نمونه­های بهینه هر دو روش با ژلاتین تجاری گاوی از نظر میزان الکتروفورز ژل اکریل آمید و رنگ مورد بررسی قرار گرفتند. نتایج حاصل نشان داد که ژلاتین پای مرغ می­تواند جایگزین مناسبی برای ژلاتین پستانداران باشد.

 
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Modeling and optimization of different chicken feet gelatin extraction processes using Response Surface Methodology

نویسندگان English

Haniyeh Esmaeli 1
Reza Farahmandfar 1
Ali Motamedzadegan 1
Maryam Asnaashari 2
1 Department of Food Science and Technology, Sari Agricultural Sciences & Natural Resources University (SANRU), Sari, Iran
2 Department of Animal Processing, Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده English

The consumption of animal by-products has grown significantly in recent decades. These by-products can be converted into sustainable products for agricultural and industrial uses. One of these sustainable products is gelatin. Among poultry slaughterhouse wastes, chicken feet are a good source for gelatin production, but there are limited studies on it. In this study, in order to determine the optimal conditions for gelatin extraction from chicken feet, the effects of four variables: sulfuric acid concentration (1 to 3 N), weight ratio of kneaded chicken feet to acid solution (1: 2-6 W/V), temperature (60 to 90°C), and extraction time (1 to 5 hours) by the acid method and three variables: sulfuric acid concentration (1 to 3 N), microwave power (360 to 720 W), and microwave time (10 to 20 min) by the microwave method on the yield and strength of the gel were investigated, respectively. The results of the experiments were analyzed using the response surface central composite design method. The proposed quadratic models for extraction efficiency and gel strength in the acid and microwave methods had high R2 and Adj-R2 and no significant lack of fit, so they were able to predict the responses well. The optimal conditions for acid extraction for maximum efficiency and gel strength were determined as temperature 76.40°C, 3 hours, 2 N acid and weight ratio of kneaded chicken feet to acid solution 1:4 W/V. Analysis of variance showed the microwave extraction process at 2 N acid concentration, power 540 W and time 20 min resulted in the highest efficiency and gel strength. Then, the optimal samples of both methods with commercial bovine gelatin were examined in terms of acrylamide gel electrophoresis and color. The results showed that chicken feet gelatin can be a suitable alternative to mammalian gelatin.
 

کلیدواژه‌ها English

Chicken feet
response surface
efficiency
gel strength
optimization
[1] Lasekan, A., Bakar, F. A., & Hashim, D. (2013). Potential of chicken by-products as sources of useful biological resources. Waste management, 33(3), 552-565.
[2] Fatima, S., Mir, M. I., Khan, M. R., Sayyed, R. Z., Mehnaz, S., Abbas, S., ... & Masih, R. (2022). The optimization of gelatin extraction from chicken feet and the development of gelatin based active packaging for the shelf-life extension of fresh grapes. Sustainability, 14(13), 7881.
[3] Mokrejš, P., Mrázek, P., Gál, R., & Pavlačková, J. (2019). Biotechnological preparation of gelatines from chicken feet. Polymers, 11(6), 1060.
[4] Kaewdang, O., Benjakul, S., Kaewmanee, T., & Kishimura, H. (2014). Characteristics of collagens from the swim bladders of yellowfin tuna (Thunnus albacares). Food Chemistry, 155, 264-270.
[5] Shahidi, F., & Botta, J. R. (2012). Seafoods: chemistry, processing technology and quality. Springer Science & Business Media.
[6] Nik Aisyah, N. M., Nurul, H., Azhar, M. E., & Fazilah, A. (2014). Poultry as an alternative source of gelatin. Health and the Environment Journal, 5(1), 37-49.
[7] Bichukale, A. D., Koli, J. M., Sonavane, A. E., Vishwasrao, V. V., Pujari, K. H., & Shingare, P. E. (2018). Functional properties of gelatin extracted from poultry skin and bone waste. International Journal of Pure & Applied Bioscience, 6(4), 87-101.
[8] Gál, R., Mokrejš, P., Mrázek, P., Pavlačková, J., Janáčová, D., & Orsavová, J. (2020). Chicken heads as a promising by-product for preparation of food gelatins. Molecules, 25(3), 494.
[9] Gómez-Guillén, M. C., Giménez, B., López-Caballero, M. A., & Montero, M. P. (2011). Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food hydrocolloids, 25(8), 1813-1827.
[10] Abedinia, A., Nafchi, A. M., Sharifi, M., Ghalambor, P., Oladzadabbasabadi, N., Ariffin, F., & Huda, N. (2020). Poultry gelatin: Characteristics, developments, challenges, and future outlooks as a sustainable alternative for mammalian gelatin. Trends in Food Science & Technology, 104, 14-26.
[11] Damrongsakkul, S., Ratanathammapan, K., Komolpis, K., & Tanthapanichakoon, W. (2008). Enzymatic hydrolysis of rawhide using papain and neutrase. Journal of industrial and Engineering Chemistry, 14(2), 202-206.
[12] Sarbon, N. M., Badii, F., & Howell, N. K. (2015). The effect of chicken skin gelatin and whey protein interactions on rheological and thermal properties. Food Hydrocolloids, 45, 83-92.
[13] Liu, T., Dai, H., Ma, L., Yu, Y., Tang, M., Li, Y., ... & Zhang, Y. (2019). Structure of Hyla rabbit skin gelatin as affected by microwave-assisted extraction. International journal of food properties, 22(1), 1594-1607.
[14] Park, J. H., Choe, J. H., Kim, H. W., Hwang, K. E., Song, D. H., Yeo, E. J., ... & Kim, C. J. (2013). Effects of various extraction methods on quality characteristics of duck feet gelatin. Food Science of Animal Resources, 33(2), 162-169.
[15] Moret, S., Conchione, C., Srbinovska, A., & Lucci, P. (2019). Microwave-based technique for fast and reliable extraction of organic contaminants from food, with a special focus on hydrocarbon contaminants. Foods, 8(10), 503.
 [16] Sabzi, F., Varidi, M. J., Varidi, M., & Asnaashari, M. (2024). Effect of verjuice (Vitis vinifera L.) on physicochemical and textural properties of beef M. biceps femoris. Food Science & Nutrition, 12(8), 5497-5517.
[17] Erge, A., & Zorba, Ö. (2018). Optimization of gelatin extraction from chicken mechanically deboned meat residue using alkaline pre-treatment. Lwt, 97, 205-212.
 [18] Farahmandfar, R., Asnaashari, M., Amraie, M., & Salehi, M. (2019). Color and weight changes of fresh-cut banana slices coated by quince seed gum: Effect of concentration, storage temperature and duration. Iranian Food Science and Technology Research Journal, 14(6), 75-85.
[19] Farahmandfar, R., Mohseni, M., & Asnaashari, M. (2017). Effects of quince seed, almond, and tragacanth gum coating on the banana slices properties during the process of hot air drying. Food science & nutrition, 5(6), 1057-1064.
 [20] Ma, M., Ma, L., Yu, W., Zhang, X., Shen, Y., & Zhang, Y. (2018). Research on rapid gelatinization of rabbit skin collagen as effect of acid treatment. Food Hydrocolloids, 77, 945-951.
 [21] Hao, S., Li, L., Yang, X., Cen, J., Shi, H., Bo, Q., & He, J. (2009). The characteristics of gelatin extracted from sturgeon (Acipenser baeri) skin using various pretreatments. Food Chemistry, 115(1), 124-128.
 [22] Chakka, A. K., Muhammed, A., Sakhare, P. Z., & Bhaskar, N. (2017). Poultry processing waste as an alternative source for mammalian gelatin: Extraction and characterization of gelatin from chicken feet using food grade acids. Waste and Biomass Valorization, 8, 2583-2593.
 [23] Choe, J., & Kim, H. Y. (2018). Effects of chicken feet gelatin extracted at different temperatures and wheat fiber with different particle sizes on the physicochemical properties of gels. Poultry Science, 97(3), 1082-1088.
 [24] Benjakul, S., Thiansilakul, Y., Visessanguan, W., Roytrakul, S., Kishimura, H., Prodpran, T., & Meesane, J. (2010). Extraction and characterisation of pepsin‐solubilised collagens from the skin of bigeye snapper (Priacanthus tayenus and Priacanthus macracanthus). Journal of the Science of Food and Agriculture, 90(1), 132-138.
 [25] Cao, S., Wang, Y., Xing, L., Zhang, W., & Zhou, G. (2020). Structure and physical properties of gelatin from bovine bone collagen influenced by acid pretreatment and pepsin. Food and Bioproducts Processing, 121, 213-223.
 [26] Aykın-Dinçer, E., Koç, A., & Erbaş, M. U. S. T. A. F. A. (2017). Extraction and physicochemical characterization of broiler (Gallus gallus domesticus) skin gelatin compared to commercial bovine gelatin. Poultry Science, 96(11), 4124-4131.
 [27] Sae‐Leaw, T., Benjakul, S., & O'Brien, N. M. (2016). Effect of pretreatments and defatting of seabass skins on properties and fishy odor of gelatin. Journal of Food Biochemistry, 40(6), 741-753.
 [28] Badii, F., & Howell, N. K. (2006). Fish gelatin: structure, gelling properties and interaction with egg albumen proteins. Food hydrocolloids, 20(5), 630-640.
 [29] Ahmad, M., & Benjakul, S. (2011). Characteristics of gelatin from the skin of unicorn leatherjacket (Aluterus monoceros) as influenced by acid pretreatment and extraction time. Food Hydrocolloids, 25(3), 381-388.
 [30] Li, S., Zeng, W., Li, R., Hoffman, L. C., He, Z., Sun, Q., & Li, H. (2018). Rabbit meat production and processing in China. Meat science, 145, 320-328.
 [31] Kim, T. K., Ham, Y. K., Shin, D. M., Kim, H. W., Jang, H. W., Kim, Y. B., & Choi, Y. S. (2020). Extraction of crude gelatin from duck skin: effects of heating methods on gelatin yield. Poultry science, 99(1), 590-596.
 [32] Feng, X., Dai, H., Ma, L., Fu, Y., Yu, Y., Zhu, H., ... & Zhang, Y. (2021). Effect of microwave extraction temperature on the chemical structure and oil-water interface properties of fish skin gelatin. Innovative Food Science & Emerging Technologies, 74, 102835.
 [33] Duan, R., Zhang, J., Liu, L., Cui, W., & Regenstein, J. M. (2018). The functional properties and application of gelatin derived from the skin of channel catfish (Ictalurus punctatus). Food chemistry, 239, 464-469.
 [34] Balti, R., Jridi, M., Sila, A., Souissi, N., Nedjar-Arroume, N., Guillochon, D., & Nasri, M. (2011). Extraction and functional properties of gelatin from the skin of cuttlefish (Sepia officinalis) using smooth hound crude acid protease-aided process. Food Hydrocolloids, 25(5), 943-950.
 [35] Kittiphattanabawon, P., Benjakul, S., Visessanguan, W., & Shahidi, F. (2010). Comparative study on characteristics of gelatin from the skins of brownbanded bamboo shark and blacktip shark as affected by extraction conditions. Food hydrocolloids, 24(2-3), 164-171.
 [36] Muyonga, J. H., Cole, C. G. B., & Duodu, K. G. (2004). Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food chemistry, 86(3), 325-332.
 [37] Guo, L., Harnedy, P. A., Zhang, L., Li, B., Zhang, Z., Hou, H., ... & FitzGerald, R. J. (2015). In vitro assessment of the multifunctional bioactive potential of Alaska pollock skin collagen following simulated gastrointestinal digestion. Journal of the Science of Food and Agriculture, 95(7), 1514-1520.
 [38] Sántiz-Gómez, M. A., Mazorra-Manzano, M. A., Ramírez-Guerra, H. E., Scheuren-Acevedo, S. M., Navarro-García, G., Pacheco-Aguilar, R., & Ramírez-Suárez, J. C. (2019). Effect of acid treatment on extraction yield and gel strength of gelatin from whiptail stingray (Dasyatis brevis) skin. Food Science and Biotechnology, 28, 751-757.
 [39] Kanwate, B. W., & Kudre, T. G. (2017). Effect of various acids on physicochemical and functional characteristics of gelatin from swim bladder of rohu (Labeo rohita). Journal of Food Science and Technology, 54, 2540-2550.
[40] Usman, M., Sahar, A., Aadil, R. M., & Shahid, M. (2024). Extraction and physicochemical characterization of native and broiler chicken feet gelatin. Journal of the Science of Food and Agriculture, 104(14), 8939-8944.
[41] Shyni, K., Hema, G. S., Ninan, G., Mathew, S., Joshy, C. G., & Lakshmanan, P. T. (2014). Isolation and characterization of gelatin from the skins of skipjack tuna (Katsuwonus pelamis), dog shark (Scoliodon sorrakowah), and rohu (Labeo rohita). Food hydrocolloids, 39, 68-76.
 [42] Ab Rahim, H., Ahmad, H., & Ab Rahim, M. H. (2021). Extraction of Gelatin from Different Parts of Gallus Gallus Domesticus. Current Science and Technology, 1(1), 50-55.
 [43] Widyasari, R., & Rawdkuen, S. (2014). Extraction and characterization of gelatin from chicken feet by acid and ultrasound assisted extraction. Food and Applied Bioscience Journal, 2(1), 85-97.
 [44] Rahman, M. N. A., & Jamalulail, S. A. S. K. A. (2012). Extraction, physicochemical characterizations and sensory quality of chicken feet gelatin. Borneo Science, 30, 1-13.
 [45] Al-Hassan, A. A. (2020). Gelatin from camel skins: Extraction and characterizations. Food Hydrocolloids, 101, 105457.
 [46] da Almeida, P. F., da Silva Lannes, S. C., Calarge, F. A., da Brito Farias, T. M., & Santana, J. C. C. (2012). FTIR characterization of gelatin from chicken feet. Journal of chemistry and chemical engineering, 6(11), 1029.