مجله علوم و صنایع غذایی ایران

مجله علوم و صنایع غذایی ایران

صدمه برآمده از برداشت مکانیکی میوه زیتون بر ویژگی های شیمیایی و دی الکتریک روغن زیتون فوق بکر استحصال شده

نوع مقاله : پژوهشی اصیل

نویسنده
عضو هیئت علمی (دانشیار) سازمان پژوهشهای علمی و صنعتی ایران، پژوهشکده مکانیک، گروه طراحی ماشین و مکاترونیک
10.48311/fsct.2026.83861.0
چکیده
در این پژوهش به منظور بررسی تأثیر ضربه برآمده از برخورد مکانیکی در برداشت میوه زیتون بر کیفیت روغن استحصال شده، اثر دو فاکتور جنس انگشتی ضربه‌زن در دو سطح و رسیدگی میوه زیتون در سه سطح مورد بررسی قرار گرفت. روش آماری مورد استفاده برای این امر آزمایش فاکتوریل در قالب طرح بلوک‌های کامل تصادفی بوده و مقایسه میانگین‌ها بر اساس آزمون چند دامنه‌ای دانکن در سطح 5 درصد انجام گرفت. یک دستگاه برداشت ضربه­ای که بر روی محور دوران آن در هر نوبت یک نوع انگشتی ضربه­زن از جنس متفاوت نئوپرن (Neoprene) و اتیلن پروپیلن رابر(EPR)  نصب گردید، برای برداشت سه نوع میوه زیتون روغنی، زرد و فیشمی در سه مرحله نارس، نیمه رسیده و رسیده استفاده شد. ویژگی­های کیفی روغن زیتون شامل مقدار اسیدیته، پراکسید، ترکیبات استرولی، ترکیب اسیدهای چرب و فنل کل رcوغن زیتون استخراج شده، بررسی گردید. همچنین خواص دی­الکتریک مربوط به ویژگی‌های شیمیایی اندازه­گیری شد. تغییرات ولتاژ نوسان فاز و دامنه با استفاده از تکنیک دی­الکتریک طیف‌سنجی به‌دست آمد و داده­های خروجی توسط شبکه عصبی مصنوعی (ANN) و ماشین بردار پشتیبان (SVM) مورد ارزیابی قرار گرفت. تحلیل میانگین‌ها و نیز بررسی شاخص‌های کیفی نشان داد، گرچه روغن استحصالی نمونه‌ها، روغن زیتون فوق بکر (EVOO) بود اما کیفیت نمونه‌های روغن زیتون برداشت شده توسط EPR بالاتر از نئوپرن بود.


 
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Damage caused by mechanical harvesting of olive fruit on the chemical and dielectric properties of extracted extra virgin olive oil

نویسنده English

Abbas Akbarnia
Faculty member (Associated professor) of Machine design and Mechatronics Department, Iranian Research Organization for Science and Technology, Institute of Mechanics, Tehran, Iran.
چکیده English

In this study, in order to investigate the effect of mechanical impact during olive fruit harvesting on the quality of the extracted oil, the effect of two factors, the type of finger-hammer at two levels and the ripeness of the olive fruit at three levels, was investigated. The statistical method used for this was a factorial experiment in a randomized complete block design, and the comparison of means was performed based on Duncan's multiple range test at the 5% level. An impact harvesting device, on whose axis of rotation was installed a different type of finger-hammer made of neoprene and ethylene propylene rubber (EPR), was used to harvest three types of oil, yellow and fish olive fruits at three stages: immature, semi-ripe and ripe. The qualitative characteristics of olive oil, including acidity, peroxide, sterol compounds, fatty acid composition and total phenol of the extracted olive oil, were investigated. Dielectric properties related to chemical characteristics were also measured. The phase and amplitude oscillation voltage changes were obtained using the dielectric spectroscopic technique and the output data were evaluated by artificial neural network (ANN) and support vector machine (SVM). Analysis of the means as well as the examination of quality indicators showed that although the extracted oil of the samples was extra virgin olive oil (EVOO), the quality of the olive oil samples extracted by EPR was higher than that of neoprene.

 

کلیدواژه‌ها English

chemical properties
Dielectric properties
mechanical damage
olive oil
oil quality
[1] Nogoy, K. M. C., Kim, H. J., Lee, Y., Zhang, Y., Yu, J., Lee, D. H., ... & Choi, S. H. (2020). High dietary oleic acid in olive oil‐supplemented diet enhanced omega‐3 fatty acid in blood plasma of rats. Food Science & Nutrition, 8(7), 3617-3625.
[2] Alowaiesh, B., Singh, Z., Fang, Z., & Kailis, S. G. (2018). Harvest time impacts the fatty acid compositions, phenolic compounds and sensory attributes of Frantoio and Manzanilla olive oil. Scientia Horticulturae, 234, 74-80.
[3] Gambella, F., Paschino, F., & Dimauro, C. (2013). Evaluation of fruit damage caused by mechanical harvesting of table olives. Transactions of the ASABE, 56(4), 1267-1272.
[4] Jiménez-Jiménez, F., Castro-García, S., Blanco-Roldán, G. L., Ferguson, L., Rosa, U. A., & Gil-Ribes, J. A. (2013). Table olive cultivar susceptibility to impact bruising. Postharvest biology and technology, 86, 100-106.
[5] Sola-Guirado, R. R., Castro-García, S., Blanco-Roldán, G. L., Jiménez-Jiménez, F., Castillo-Ruiz, F. J., & Gil-Ribes, J. A. (2014). Traditional olive tree response to oil olive harvesting technologies. Biosystems Engineering, 118, 186-193.
[6] Peng, L., Yuan, J., Yao, D., & Chen, C. (2021). Fingerprinting triacylglycerols and aldehydes as identity and thermal stability indicators of camellia oil through chemometric comparison with olive oil. Food Science & Nutrition, 9(5), 2561-2575.
[7] Chanioti, S., & Tzia, C. (2019). Evaluation of ultrasound assisted and conventional methods for production of olive pomace oil enriched in sterols and squalene. Lwt, 99, 209-216.
[8] Altieri, G., Matera, A., Genovese, F., & Di Renzo, G. C. (2020). Models for the rapid assessment of water and oil content in olive pomace by near‐infrared spectrometry. Journal of the Science of Food and Agriculture, 100(7), 3236-3245.
[9] Sanaeifar, A., Jafari, A., & Golmakani, M. T. (2018). Fusion of dielectric spectroscopy and computer vision for quality characterization of olive oil during storage. Computers and Electronics in Agriculture, 145, 142-152.
[10] Reffas, A., Moulai, H., & Beroual, A. (2018). Comparison of dielectric properties of olive oil, mineral oil, and other natural and synthetic ester liquids under AC and lightning impulse stresses. IEEE Transactions on Dielectrics and Electrical Insulation, 25(5), 1822-1830.
[11] Beltran Ortega, J., Martinez Gila, D. M., Aguilera Puerto, D., Gamez Garcia, J., & Gomez Ortega, J. (2016). Novel technologies for monitoring the in‐line quality of virgin olive oil during manufacturing and storage. Journal of the Science of Food and Agriculture, 96(14), 4644-4662.
[12] Boukhiar, A., Kechadi, K., Abdellaoui, R., Iguergaziz, N., Guemmane, M., & Benamara, S. (2017). Drying ability of whole black olive (Olea europaea L.) fruits in Kabylian region (North-East Algeria).
[13] Li, Z., & Wang, Y. (2016). A multiscale finite element model for mechanical response of tomato fruits. Postharvest Biology and Technology, 121, 19-26.
[14] Dagdelen, C., & Aday, M. S. (2021). The effect of simulated vibration frequency on the physico-mechanical and physicochemical properties of peach during transportation. LWT, 137, 110497.
[15] Extra virgin olive oil (EVOO) extraction process instructions, source: Google search.
[16] Titration method for determining acidity and peroxide content in oils and fats, source: Google search.
[17] Veneziani, G., Esposto, S., Taticchi, A., Urbani, S., Selvaggini, R., Sordini, B., & Servili, M. (2018). Characterization of phenolic and volatile composition of extra virgin olive oil extracted from six Italian cultivars using a cooling treatment of olive paste. LWT, 87, 523-528.
[18] Cercaci, L., Rodriguez-Estrada, M. T., & Lercker, G. (2003). Solid-phase extraction–thin-layer chromatography–gas chromatography method for the detection of hazelnut oil in olive oils by determination of esterified sterols. Journal of Chromatography A, 985(1-2), 211-220.
[19] Torrecilla, J. S., Cancilla, J. C., Matute, G., Díaz-Rodríguez, P., & Flores, A. I. (2013). Self- organizing maps based on chaotic parameters to detect adulterations of extra virgin olive oil with inferior edible oils. Journal of Food Engineering, 118(4), 400-405.
[20] Li, F., Qiao, J., Han, H., & Yang, C. (2016). A self-organizing cascade neural network with random weights for nonlinear system modeling. Applied soft computing, 42, 184-193.
[21] Jiménez-Carvelo, A. M., Osorio, M. T., Koidis, A., González-Casado, A., & Cuadros-Rodríguez, L. (2017). Chemometric classification and quantification of olive oil in blends with any edible vegetable oils using FTIR-ATR and Raman spectroscopy. LWT, 86, 174-184.
[22] Chen, W. (2003). New RBF collocation methods and kernel RBF with applications. In Meshfree methods for partial differential equations (pp. 75-86). Springer, Berlin, Heidelberg.
[23] Mehdizadeh, S., Behmanesh, J., & Khalili, K. (2017). Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Computers and electronics in agriculture, 139, 103-114.
[24] Rashvand, M., Akbarnia, A., Abbaszadeh, R., Karimi, D., & Jafari, A. (2021). Measurement bruise volume of olive during impact test using FEM and quality evaluation of extracted olive oil. Food Science & Nutrition.
[25] Nadian, M. H., & Abbaspour-fard, M. H. (2016). Measurement of physical and mechanical properties of Russian olive (Elaeagnus angustifolia L.) fruit. International Journal of Food Engineering, 12(1), 91-100.
[26] Sánchez‐Rodríguez, M. I., Sánchez‐López, E. M., Marinas, A., Urbano, F. J., & Caridad, J. M. (2020). Functional approach and agro‐climatic information to improve the estimation of olive oil fatty acid content from near‐infrared data. Food science & nutrition, 8(1), 351-360.
[27] Razeghi Jahromi, F., Hoseini Mazinani, S.M., Mohammadi, S., Razavi, K., Shiran, B. & Mostafavi, K. (2016). Selecting the optimal time to harvest olive fruit in some Iranian and Mediterranean cultivars based on oil content and composition of fatty acids. Journal of Crop Production and Processing, 6(19), 85-95.
[28] Seifi, E., Jalali, A., Ebrahimnia, S. & Fereidouni, H. (2016). Comparison of biochemical composition of three-cultivar olive oil (Olea europaea L) in different regions of Golestan province. Journal of Plant Eco-Physiology, 11(43), 52-65.
[29] Aşkın, B., & Kaya, Y. (2020). Effect of deep frying process on the quality of the refined oleic/linoleic sunflower seed oil and olive oil. Journal of Food Science and Technology, 57(12), 4716-4725.
[30] García-Inza, G. P., Castro, D. N., Hall, A. J., & Rousseaux, M. C. (2016). Opposite oleic acid responses to temperature in oils from the seed and mesocarp of the olive fruit. European Journal of Agronomy, 76, 138-147.
[31] Hernández, M. L., Sicardo, M. D., Belaj, A., & Martínez-Rivas, J. M. (2021). The Oleic/Linoleic Acid Ratio in Olive (Olea europaea L.) Fruit Mesocarp Is Mainly Controlled by OeFAD2-2 and OeFAD2-5 Genes Together With the Different Specificity of Extraplastidial Acyltransferase Enzymes. Frontiers in Plant Science, 12, 345.
[32] Osanloo, M., Jamali, N., & Nematollahi, A. (2021). Improving the oxidative stability of virgin olive oil using microformulated vitamin‐C. Food Science & Nutrition.
[33] Squeo, G., Difonzo, G., Summo, C., Crecchio, C., & Caponio, F. (2020). Study of the influence of technological coadjuvants on enzyme activities and phenolic and volatile compounds in virgin olive oil by a response surface methodology approach. LWT, 133, 109887.
[34] Valantina, S. R., Susan, D., Bavasri, S., Priyadarshini, V., Saraswathi, R. R., & Suriya, M. (2016). Experimental investigation of electro-rheological properties of modeled vegetable oils. Journal of food science and technology, 53(2), 1328-1337.
[35] Zhang, S., Pan, Y. G., Zheng, L., Yang, Y., Zheng, X., Ai, B., ... & Sheng, Z. (2019). Application of steam explosion in oil extraction of camellia seed (Camellia oleifera Abel.) and evaluation of its physicochemical properties, fatty acid, and antioxidant activities. Food science & nutrition, 7(3), 1004-1016.
[36] Lammi, C., Mulinacci, N., Cecchi, L., Bellumori, M., Bollati, C., Bartolomei, M., ... & Arnoldi, A. (2020). Virgin olive oil extracts reduce oxidative stress and modulate cholesterol metabolism: Comparison between oils obtained with traditional and innovative processes. Antioxidants, 9(9), 798.
[37] Piscopo, A., Zappia, A., De Bruno, A., & Poiana, M. (2018). Effect of the harvesting time on the quality of olive oils produced in Calabria. European journal of lipid science and technology, 120(7), 1700304.
[38] Xu, B., Zhang, L., Wang, H., Luo, D., & Li, P. (2014). Characterization and authentication of four important edible oils using free phytosterol profiles established by GC-GC-TOF/MS. Analytical Methods, 6(17), 6860-6870.
[39] Ahmed, J., Thomas, L., & Mulla, M. (2020). Dielectric and microstructural properties of high-pressure treated hummus in the selected packaging materials. LWT, 118, 108885.
[40] Lizhi, H., Toyoda, K., & Ihara, I. (2010). Discrimination of olive oil adulterated with vegetable oils using dielectric spectroscopy. Journal of Food Engineering, 96(2), 167-171.
[41] Karami, H., Rasekh, M., & Mirzaee–Ghaleh, E. (2020). Comparison of chemometrics and AOCS official methods for predicting the shelf life of edible oil. Chemometrics and Intelligent Laboratory Systems, 206, 104165.
[42] Marchal, P. C., Gila, D. M., García, J. G., & Ortega, J. G. (2013). Expert system based on computer vision to estimate the content of impurities in olive oil samples. Journal of Food Engineering, 119(2), 220-228.