[1] Nogoy, K. M. C., Kim, H. J., Lee, Y., Zhang, Y., Yu, J., Lee, D. H., ... & Choi, S. H. (2020). High dietary oleic acid in olive oil‐supplemented diet enhanced omega‐3 fatty acid in blood plasma of rats. Food Science & Nutrition, 8(7), 3617-3625.
[2] Alowaiesh, B., Singh, Z., Fang, Z., & Kailis, S. G. (2018). Harvest time impacts the fatty acid compositions, phenolic compounds and sensory attributes of Frantoio and Manzanilla olive oil. Scientia Horticulturae, 234, 74-80.
[3] Gambella, F., Paschino, F., & Dimauro, C. (2013). Evaluation of fruit damage caused by mechanical harvesting of table olives. Transactions of the ASABE, 56(4), 1267-1272.
[4] Jiménez-Jiménez, F., Castro-García, S., Blanco-Roldán, G. L., Ferguson, L., Rosa, U. A., & Gil-Ribes, J. A. (2013). Table olive cultivar susceptibility to impact bruising. Postharvest biology and technology, 86, 100-106.
[5] Sola-Guirado, R. R., Castro-García, S., Blanco-Roldán, G. L., Jiménez-Jiménez, F., Castillo-Ruiz, F. J., & Gil-Ribes, J. A. (2014). Traditional olive tree response to oil olive harvesting technologies. Biosystems Engineering, 118, 186-193.
[6] Peng, L., Yuan, J., Yao, D., & Chen, C. (2021). Fingerprinting triacylglycerols and aldehydes as identity and thermal stability indicators of camellia oil through chemometric comparison with olive oil. Food Science & Nutrition, 9(5), 2561-2575.
[7] Chanioti, S., & Tzia, C. (2019). Evaluation of ultrasound assisted and conventional methods for production of olive pomace oil enriched in sterols and squalene. Lwt, 99, 209-216.
[8] Altieri, G., Matera, A., Genovese, F., & Di Renzo, G. C. (2020). Models for the rapid assessment of water and oil content in olive pomace by near‐infrared spectrometry. Journal of the Science of Food and Agriculture, 100(7), 3236-3245.
[9] Sanaeifar, A., Jafari, A., & Golmakani, M. T. (2018). Fusion of dielectric spectroscopy and computer vision for quality characterization of olive oil during storage. Computers and Electronics in Agriculture, 145, 142-152.
[10] Reffas, A., Moulai, H., & Beroual, A. (2018). Comparison of dielectric properties of olive oil, mineral oil, and other natural and synthetic ester liquids under AC and lightning impulse stresses. IEEE Transactions on Dielectrics and Electrical Insulation, 25(5), 1822-1830.
[11] Beltran Ortega, J., Martinez Gila, D. M., Aguilera Puerto, D., Gamez Garcia, J., & Gomez Ortega, J. (2016). Novel technologies for monitoring the in‐line quality of virgin olive oil during manufacturing and storage. Journal of the Science of Food and Agriculture, 96(14), 4644-4662.
[12] Boukhiar, A., Kechadi, K., Abdellaoui, R., Iguergaziz, N., Guemmane, M., & Benamara, S. (2017). Drying ability of whole black olive (Olea europaea L.) fruits in Kabylian region (North-East Algeria).
[13] Li, Z., & Wang, Y. (2016). A multiscale finite element model for mechanical response of tomato fruits. Postharvest Biology and Technology, 121, 19-26.
[14] Dagdelen, C., & Aday, M. S. (2021). The effect of simulated vibration frequency on the physico-mechanical and physicochemical properties of peach during transportation. LWT, 137, 110497.
[15] Extra virgin olive oil (EVOO) extraction process instructions, source: Google search.
[16] Titration method for determining acidity and peroxide content in oils and fats, source: Google search.
[17] Veneziani, G., Esposto, S., Taticchi, A., Urbani, S., Selvaggini, R., Sordini, B., & Servili, M. (2018). Characterization of phenolic and volatile composition of extra virgin olive oil extracted from six Italian cultivars using a cooling treatment of olive paste. LWT, 87, 523-528.
[18] Cercaci, L., Rodriguez-Estrada, M. T., & Lercker, G. (2003). Solid-phase extraction–thin-layer chromatography–gas chromatography method for the detection of hazelnut oil in olive oils by determination of esterified sterols. Journal of Chromatography A, 985(1-2), 211-220.
[19] Torrecilla, J. S., Cancilla, J. C., Matute, G., Díaz-Rodríguez, P., & Flores, A. I. (2013). Self- organizing maps based on chaotic parameters to detect adulterations of extra virgin olive oil with inferior edible oils. Journal of Food Engineering, 118(4), 400-405.
[20] Li, F., Qiao, J., Han, H., & Yang, C. (2016). A self-organizing cascade neural network with random weights for nonlinear system modeling. Applied soft computing, 42, 184-193.
[21] Jiménez-Carvelo, A. M., Osorio, M. T., Koidis, A., González-Casado, A., & Cuadros-Rodríguez, L. (2017). Chemometric classification and quantification of olive oil in blends with any edible vegetable oils using FTIR-ATR and Raman spectroscopy. LWT, 86, 174-184.
[22] Chen, W. (2003). New RBF collocation methods and kernel RBF with applications. In Meshfree methods for partial differential equations (pp. 75-86). Springer, Berlin, Heidelberg.
[23] Mehdizadeh, S., Behmanesh, J., & Khalili, K. (2017). Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Computers and electronics in agriculture, 139, 103-114.
[24] Rashvand, M., Akbarnia, A., Abbaszadeh, R., Karimi, D., & Jafari, A. (2021). Measurement bruise volume of olive during impact test using FEM and quality evaluation of extracted olive oil. Food Science & Nutrition.
[25] Nadian, M. H., & Abbaspour-fard, M. H. (2016). Measurement of physical and mechanical properties of Russian olive (Elaeagnus angustifolia L.) fruit. International Journal of Food Engineering, 12(1), 91-100.
[26] Sánchez‐Rodríguez, M. I., Sánchez‐López, E. M., Marinas, A., Urbano, F. J., & Caridad, J. M. (2020). Functional approach and agro‐climatic information to improve the estimation of olive oil fatty acid content from near‐infrared data. Food science & nutrition, 8(1), 351-360.
[27] Razeghi Jahromi, F., Hoseini Mazinani, S.M., Mohammadi, S., Razavi, K., Shiran, B. & Mostafavi, K. (2016). Selecting the optimal time to harvest olive fruit in some Iranian and Mediterranean cultivars based on oil content and composition of fatty acids. Journal of Crop Production and Processing, 6(19), 85-95.
[28] Seifi, E., Jalali, A., Ebrahimnia, S. & Fereidouni, H. (2016). Comparison of biochemical composition of three-cultivar olive oil (Olea europaea L) in different regions of Golestan province. Journal of Plant Eco-Physiology, 11(43), 52-65.
[29] Aşkın, B., & Kaya, Y. (2020). Effect of deep frying process on the quality of the refined oleic/linoleic sunflower seed oil and olive oil. Journal of Food Science and Technology, 57(12), 4716-4725.
[30] García-Inza, G. P., Castro, D. N., Hall, A. J., & Rousseaux, M. C. (2016). Opposite oleic acid responses to temperature in oils from the seed and mesocarp of the olive fruit. European Journal of Agronomy, 76, 138-147.
[31] Hernández, M. L., Sicardo, M. D., Belaj, A., & Martínez-Rivas, J. M. (2021). The Oleic/Linoleic Acid Ratio in Olive (Olea europaea L.) Fruit Mesocarp Is Mainly Controlled by OeFAD2-2 and OeFAD2-5 Genes Together With the Different Specificity of Extraplastidial Acyltransferase Enzymes. Frontiers in Plant Science, 12, 345.
[32] Osanloo, M., Jamali, N., & Nematollahi, A. (2021). Improving the oxidative stability of virgin olive oil using microformulated vitamin‐C. Food Science & Nutrition.
[33] Squeo, G., Difonzo, G., Summo, C., Crecchio, C., & Caponio, F. (2020). Study of the influence of technological coadjuvants on enzyme activities and phenolic and volatile compounds in virgin olive oil by a response surface methodology approach. LWT, 133, 109887.
[34] Valantina, S. R., Susan, D., Bavasri, S., Priyadarshini, V., Saraswathi, R. R., & Suriya, M. (2016). Experimental investigation of electro-rheological properties of modeled vegetable oils. Journal of food science and technology, 53(2), 1328-1337.
[35] Zhang, S., Pan, Y. G., Zheng, L., Yang, Y., Zheng, X., Ai, B., ... & Sheng, Z. (2019). Application of steam explosion in oil extraction of camellia seed (Camellia oleifera Abel.) and evaluation of its physicochemical properties, fatty acid, and antioxidant activities. Food science & nutrition, 7(3), 1004-1016.
[36] Lammi, C., Mulinacci, N., Cecchi, L., Bellumori, M., Bollati, C., Bartolomei, M., ... & Arnoldi, A. (2020). Virgin olive oil extracts reduce oxidative stress and modulate cholesterol metabolism: Comparison between oils obtained with traditional and innovative processes. Antioxidants, 9(9), 798.
[37] Piscopo, A., Zappia, A., De Bruno, A., & Poiana, M. (2018). Effect of the harvesting time on the quality of olive oils produced in Calabria. European journal of lipid science and technology, 120(7), 1700304.
[38] Xu, B., Zhang, L., Wang, H., Luo, D., & Li, P. (2014). Characterization and authentication of four important edible oils using free phytosterol profiles established by GC-GC-TOF/MS. Analytical Methods, 6(17), 6860-6870.
[39] Ahmed, J., Thomas, L., & Mulla, M. (2020). Dielectric and microstructural properties of high-pressure treated hummus in the selected packaging materials. LWT, 118, 108885.
[40] Lizhi, H., Toyoda, K., & Ihara, I. (2010). Discrimination of olive oil adulterated with vegetable oils using dielectric spectroscopy. Journal of Food Engineering, 96(2), 167-171.
[41] Karami, H., Rasekh, M., & Mirzaee–Ghaleh, E. (2020). Comparison of chemometrics and AOCS official methods for predicting the shelf life of edible oil. Chemometrics and Intelligent Laboratory Systems, 206, 104165.
[42] Marchal, P. C., Gila, D. M., García, J. G., & Ortega, J. G. (2013). Expert system based on computer vision to estimate the content of impurities in olive oil samples. Journal of Food Engineering, 119(2), 220-228.