مجله علوم و صنایع غذایی ایران

مجله علوم و صنایع غذایی ایران

بررسی اثر فرآیند جوانه زنی و تخمیر به عنوان بهبود ارزش تغذیه ای دانه ماش

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی واحد اصفهان(خوراسگان)، اصفهان، ایران
2 گروه علوم و صنایع غذایی، مرکز تحقیقات لیزر و بیوفوتونیک در فناوریهای زیستی، دانشگاه آزاد اسلامی واحد اصفهان(خوراسگان)، اصفهان، ایران
3 گروه مهندسی پزشکی، مرکز تحقیقات لیزر و بیوفوتونیک در فناوریهای زیستی، دانشگاه آزاد اسلامی واحد اصفهان(خوراسگان)، اصفهان، ایران
10.48311/fsct.2026.83976.0
چکیده
امروزه توجه به حبوبات جوانه زده در صنایع غذایی اهمیت فراوانی یافته است. در این پژوهش تاثیر فرایند جوانه­زنی و فرآیند جوانه زنی و تخمیر توام با ساکارومایسز سروزیه بر خصوصیات فیزیکوشیمیایی، کیفی و تغذیه­ای ماش مورد بررسی قرار گرفت. رطوبت، پروتئین، چربی، خاکستر، نشاسته، قند، اسید فیتیک، فنول کل و فعالیت آنتی اکسیدانی، محتوی ویتامین های محلول در آب و پروفایل اسیدهای آمینه نمونه های مختلف ماش اندازه گیری شد. نتایج نشان داد فرآیند تخمیر و جوانه زنی منجر به کاهش رطوبت (85/6 %) و نشاسته (84/29 %) و افزایش قند (2/2 میلی گرم بر میلی لیتر)، چربی (38/2 %) و خاکستر (27/5 %) شده است. میزان ترکیبات فنولی کل (01/72 میلی گرم اسید گالیک بر گرم خشک) و خاصیت آنتی اکسیدانی مهار رادیکال آزاد دی­پی­پی­اچ (32/74 %) با عملیات تخمیر افزایش یافت که به دلیل آزاد شدن فنول­های باند شده در نتیجه فرآیند جوانه زنی و افزایش زیست دسترس پذیری آن ها در فرآیند تخمیر بود. تخمیر و جوانه زنی با استفاد از آنزیم های تجزیه کننده منجر به کاهش محتوی اسید فیتیک (64/0 میلی گرم بر 100 گرم) شد. میزان ویتامبن های محلول در آب با اعمال فرآیند تخمیر و جوانه زنی افزایش یافت. فرآیند جوانه زنی و تخمیر منجر به افزایش میزان پروتئین (83/29 %) و همچنین افزایش اسیدهای آمینه شد که مرتبط با فعالیت مخمر می­باشد. نتایج این تحقیق استفاده از فرآیند جوانه زنی و تخمیر را به منظور افزایش ارزش تغذیه­ای ماش مثبت ارزیابی نمود.
 
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the Effect of Sprouting and Fermentation Processes to Improve the Nutritional Value of Mung Bean

نویسندگان English

Katayoon Nabavi 1
Mohammad Goli 2
Sharifeh Shahi 3
1 Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
2 Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
3 Department of Medical Engineering, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
چکیده English

Sprouted legumes have recently received a lot of interest in the food business. In this work, the impacts of the germination process and the combined germination and fermentation with Saccharomyces cerevisiae on the physicochemical, qualitative, and nutritional aspects of mung bean were investigated. Moisture, protein, fat, ash, starch, sugar, phytic acid, total phenolics, antioxidant activity, water-soluble vitamins, and amino acid profiles were assessed in various mung bean samples. The results revealed that the fermentation and germination processes reduced moisture (6.85%) and starch (29.84%) while increasing sugar (2.2 mg/mL), fat (2.38%), and ash (5.27%). Due to the release of bound phenolics during germination and their higher bioavailability during fermentation, total phenolic compounds (72.01 mg gallic acid per gram of dry weight) and DPPH radical-scavenging antioxidant activity (74.32%) increased with fermentation. Degrading enzymes during fermentation and germination caused the amount of phytic acid to decrease to 0.64 mg per 100g. As the fermentation and germination processes progressed, the concentrations of water-soluble vitamins rose. Yeast activity is responsible for the increase in protein content (29.83%) and amino acids that resulted from germination and fermentation. The utilization of germination and fermentation procedures to increase the nutritional content of mung beans is positively evaluated by the study's findings.
 

کلیدواژه‌ها English

Nutritional value
Phytic acid
Fermentation
Germination
Mung bean
[1] Anita, D.D. and K.R. Sridhar, Nutritional and bioactive profiles of sprouted seeds of mangrove wild legume Canavalia cathartica. Plant and Human Health, Volume 2: Phytochemistry and Molecular Aspects, 2019: p. 287-301.
[2] Sehrawat, N., et al., Review on health promoting biological activities of mungbean: A potent functional food of medicinal importance. Plant Archives, 2020. 20(2): p. 2969-2975.
[3] Nelson, K., et al., Effects of malted and non-malted whole-grain wheat on metabolic and inflammatory biomarkers in overweight/obese adults: a randomised crossover pilot study. Food Chemistry, 2016. 194: p. 495-502.
[4] Bressiani, J., et al., Properties of whole grain wheat flour and performance in bakery products as a function of particle size. Journal of Cereal Science, 2017. 75: p. 269-277.
[5] Singh, A.k., et al., Enhancement of attributes of cereals by germination and fermentation: A review. Critical Reviews in Food Science and Nutrition, 2015. 55(11): p. 1575-1589.
[6] Basaran-Akgul, N., Packaging Requirements for Non-Thermal Processed Grain-Based Foods, in Non-Thermal Processing Technologies for the Grain Industry. 2021, CRC Press. p. 199-222.
[7] Tan, M., M.A. Nawaz, and R. Buckow, Functional and food application of plant proteins–a review. Food Reviews International, 2023. 39(5): p. 2428-2456.
[8] Anaemene, D. and G. Fadupin, Anti-nutrient reduction and nutrient retention capacity of fermentation, germination and combined germination-fermentation in legume processing. Applied Food Research, 2022. 2(1): p. 100059.
[9] Iran National Standard Organization. No. 37. 2014. Biscuits – Specifications and Test Methods, Seventh Revision.
[10] Iran National Standard Organization. No. 19052. 2013. Cereals and Legumes – Determination of Nitrogen Content and Calculation of Crude Protein – Kjeldahl Method.
[11] Razavi, R., et al., Fabrication of zein/alginate delivery system for nanofood model based on pumpkin. International journal of biological macromolecules, 2020. 165: p. 3123-3134.
[12] Iran National Standard Organization No. 17028. 1392. Wheat – Wheat Bran for Human Consumption – Specifications and Test Methods.
[13] Razavi, R. and R.E. Kenari, Antioxidant evaluation of Fumaria parviflora L. extract loaded nanocapsules obtained by green extraction methods in oxidative stability of sunflower oil. Journal of Food Measurement and Characterization, 2021: p. 1-10.
[14] Anaemene, D. and G. Fadupin, Effect of fermentation, germination and combined germination-fermentation processing methods on the nutrient and anti-nutrient contents of quality protein maize (QPM) seeds. Journal of Applied Sciences and Environmental Management, 2020. 24(9): p. 1625-1630.
[15] Pinheiro, S.S., et al., Stability of B vitamins, vitamin E, xanthophylls and flavonoids during germination and maceration of sorghum (Sorghum bicolor L.). Food Chemistry, 2021. 345: p. 128775.
[16] Talebi Najafabadi, S., Sharifi, A., & Abselan, A. A. 2019.Investigation of the effect of the germination process on the changes in nutritional value and some physicochemical properties of mung bean. Research Findings in Agronomy and Horticultural Plants, 8(2), 211-224.
[17] Sheirvani, A., Shahedi, M., & Goli, A. H. 2015.Effect of germination on the chemical composition, nutritional properties, and antioxidant activity of mung bean seeds. Quarterly Journal of Food Science and Technology, 62(14).
[18] Obadina, A.O., et al., Changes in nutritional and physico-chemical properties of pearl millet (Pennisetum glaucum) Ex-Borno variety flour as a result of malting. Journal of Food Science and Technology, 2017. 54: p. 4442-4451.
[19] Khare, B., V. Sangwan, and V. Rani, Influence of sprouting on proximate composition, dietary fiber, nutrient availability, antinutrient, and antioxidant activity of flaxseed varieties. Journal of Food Processing and Preservation, 2021. 45(4): p. e15344.
[20] Megat Rusydi, M., et al., Nutritional changes in germinated legumes and rice varieties. International Food Research Journal, 2011. 18(2).
[21] Wakil, S. and M. Kazeem, Quality assessment of weaning food produced from fermented cereal-legume blends using starters. International Food Research Journal, 2012. 19(4).
[22] Ikujenlola, A.V. and E. Adurotoye, Evaluation of quality characteristics of high nutrient dense complementary food from mixtures of malted Quality Protein Maize (Zea mays L.) and steamed cowpea (Vigna unguiculata). 2014.
[23] Atudorei, D., S.-G. Stroe, and G.G. Codină, Impact of germination on the microstructural and physicochemical properties of different legume types. Plants, 2021. 10(3): p. 592.
[24] Arbab Sakandar, H., et al., Impact of fermentation on antinutritional factors and protein degradation of legume seeds: A review. Food Reviews International, 2023. 39(3): p. 1227-1249.
[25] Azeez, S.O., et al., Impact of germination alone or in combination with solid-state fermentation on the physicochemical, antioxidant, in vitro digestibility, functional and thermal properties of brown finger millet flours. Lwt, 2022. 154: p. 112734.
[26] Xu, M., et al., Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food chemistry, 2019. 295: p. 579-587.
[27] Fouad, A.A. and F. Rehab, Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens culinaris Medik.) sprouts. Acta Scientiarum Polonorum Technologia Alimentaria, 2015. 14(3): p. 233-246.
[28] Oskaybaş-Emlek, B., A. Özbey, and K. Kahraman, Effects of germination on the physicochemical and nutritional characteristics of lentil and its utilization potential in cookie-making. Journal of Food Measurement and Characterization, 2021. 15(5): p. 4245-4255.
[29] Nkhata, S.G., et al., Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food science & nutrition, 2018. 6(8): p. 2446-2458.
[30] Pranoto, Y., S. Anggrahini, and Z. Efendi, Effect of natural and Lactobacillus plantarum fermentation on in-vitro protein and starch digestibilities of sorghum flour. Food Bioscience, 2013. 2: p. 46-52.
[31] Hassan, F., et al., Shelf-life extension of sweet basil leaves by edible coating with thyme volatile oil encapsulated chitosan nanoparticles. International Journal of Biological Macromolecules, 2021. 177: p. 517-525.
[32] Oyarekua, M., Comparative studies of co-fermented maize/pigeon pea and maize/mucuna as infants complementary foods. Wudpecker Journal of Food Technology, 2013. 1(1): p. 001-008.
[33] Onweluzo, J. and C. Nwabugwu, Fermentation of millet (Pennisetum americanum) and pigeon pea (Cajanus cajan) seeds for flour production: Effects on composition and selected functional properties. Pakistan Journal of Nutrition, 2009. 8(6): p. 737-744.
[34] Mohammed, B.M., et al., The Effect of Germination and Fermentation on the Physicochemical, Nutritional, and Functional Quality Attributes of Samh Seeds. Foods, 2023. 12(22): p. 4133.
[35] Mbaeyi Nwaoha, I. and F. Obetta, Production and evaluation of nutrient-dense complementary food from millet (Pennisetum glaucum), pigeon pea (Cajanus cajan) and seedless breadfruit (Artocarpus altillis) leaf powder blends. African Journal of Food Science, 2016. 10(9): p. 143-156.
[36] Chatzimitakos, T., et al., Nutritional Quality and Antioxidant Properties of Brown and Black Lentil Sprouts. Horticulturae, 2023. 9(6): p. 668.
[37] Kinyua, P., et al., Nutritional composition of Kenyan sorghum-pigeon pea instant complementary food. Journal of Agriculture, Science and Technology, 2016. 17(1): p. 1-12.
[38] Sade, F.O., Proximate, antinutritional factors and functional properties of processed pearl millet (Pennisetum glaucum). Journal of food technology, 2009. 7(3): p. 92-97.
[39] Pilco-Quesada, S., et al., Effects of germination and kilning on the phenolic compounds and nutritional properties of quinoa (Chenopodium quinoa) and kiwicha (Amaranthus caudatus). Journal of Cereal Science, 2020. 94: p. 102996.
[40] Rodríguez-España, M., et al., Effects of germination and lactic acid fermentation on nutritional and rheological properties of sorghum: A graphical review. Current Research in Food Science, 2022. 5: p. 807-812.
[41] Oliveira, M.E.A.S., et al., How does germinated rice impact starch structure, products and nutrional evidences?–A review. Trends in Food Science & Technology, 2022. 122: p. 13-23.
[42] Afify, A.E.-M.M., et al., Oil and fatty acid contents of white sorghum varieties under soaking, cooking, germination and fermentation processing for improving cereal quality. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2012. 40(1): p. 86-92.
[43] Verma, M., et al., Beneficial effects of soaking and germination on nutritional quality and bioactive compounds of biofortified wheat derivatives. 2021.
[44] Świeca, M., B. Baraniak, and U. Gawlik-Dziki, In vitro digestibility and starch content, predicted glycemic index and potential in vitro antidiabetic effect of lentil sprouts obtained by different germination techniques. Food chemistry, 2013. 138(2-3): p. 1414-1420.
[45] Chinma, C.E., et al., Effect of germination on the physicochemical and antioxidant characteristics of rice flour from three rice varieties from Nigeria. Food chemistry, 2015. 185: p. 454-458.
[46] Şenlik, A.S. and D. Alkan, Improving the nutritional quality of cereals and legumes by germination. Czech Journal of Food Sciences, 2023. 41(5).
[47] Kaur, H. and B.S. Gill, Changes in physicochemical, nutritional characteristics and ATR–FTIR molecular interactions of cereal grains during germination. Journal of Food Science and Technology, 2021. 58(6): p. 2313-2324.
[48] Melini, F. and V. Melini, Impact of fermentation on phenolic compounds and antioxidant capacity of quinoa. Fermentation, 2021. 7(1): p. 20.
[49] Patil, S.B. and S. Jena, Effects of soaking and sprouting time on nutritional parameters of sprouted green colour black gram of Sikkim region. Journal of Agricultural Engineering, 2023. 60(2): p. 153-164.
[50] Sharma, S., D.C. Saxena, and C.S. Riar, Changes in the GABA and polyphenols contents of foxtail millet on germination and their relationship with in vitro antioxidant activity. Food Chemistry, 2018. 245: p. 863-870.
[51] Cáceres, P.J., et al., Enhancement of biologically active compounds in germinated brown rice and the effect of sun-drying. Journal of Cereal Science, 2017. 73: p. 1-9.
[52] KianiSam, M., Ranjbar, M. Amjad, L. 2014. Study of changes in the amount of phenolic compounds and antioxidant capacity of lentil and mash seeds due to germination. Food industry research. 25, 2, 209 -219
 [53] Kumar, S. and R. Anand, Effect of germination and temperature on phytic acid content of cereals. International Journal of Agricultural Science, 2021. 8(1): p. 24-35.
[54] Arshad, N., et al., The comparative effect of lactic acid fermentation and germination on the levels of neurotoxin, anti-nutrients, and nutritional attributes of sweet blue pea (Lathyrus sativus L.). Foods, 2023. 1(15): 2851.
[55] Rico, D., et al., Development of antioxidant and nutritious lentil (Lens culinaris) flour using controlled optimized germination as a bioprocess. Foods, 2021. 10(12): p. 2924.
 [56] Chauhan, D., et al., Impact of soaking, germination, fermentation, and roasting treatments on nutritional, anti-nutritional, and bioactive composition of black soybean (Glycine max L.). J. Appl. Biol. Biotechnol, 2022. 10(5): p. 186-192
[57] Effect of Germination and lllumination on melatonin and its metabolites phenolic content and antioxidant activity in mung bean sprouts by Pimolwan siriparu , Panyada panyatip Thanawat pota, Chawalit Yongram , Tarapong srisongkram … 2022