مجله علوم و صنایع غذایی ایران

مجله علوم و صنایع غذایی ایران

استخراج آنتوسیانین‌ها از میوه سماق (Rhus coriaria L.) و ارزیابی برخی عوامل مؤثر بر پایداری آنها

نوع مقاله : مروری سیستماتیک

نویسندگان
1 گروه علوم غذایی، دانشکده مهندسی کشاورزی، دانشگاه بغداد، عراقگروه علوم غذایی، دانشکده مهندسی کشاورزی، دانشگاه بغداد، عراق
2 گروه علوم غذایی، دانشکده مهندسی کشاورزی، دانشگاه بغداد، عراق
10.48311/fsct.2025.117275.82906
چکیده
این مطالعه با هدف استخراج رنگدانه‌های آنتوسیانین از پودر میوه سماق (Rhus coriaria L.) با استفاده از حلال‌های مختلف در نسبت‌های مختلف جامد به حلال (1:10، 1:20، 1:30) انجام شد. استخراج‌ها در دماهای 30، 50 و 70 درجه سانتیگراد به مدت 30 و 60 دقیقه انجام شد تا شرایط بهینه برای دستیابی به بالاترین غلظت رنگدانه تعیین شود. این مطالعه همچنین پایداری آنتوسیانین‌ها را در مقادیر مختلف pH (1-9) و دمای نگهداری از 18- تا 100 درجه سانتیگراد به مدت 60 دقیقه ارزیابی کرد. نتایج نشان داد که بهترین شرایط استخراج با استفاده از اتانول اسیدی شده با اسید سیتریک 5% با نسبت 1:10، دمای 70 درجه سانتیگراد و زمان 60 دقیقه حاصل شد که غلظت آنتوسیانین 20.67 میلی‌گرم در 100 گرم را به همراه داشت، که در مقایسه با سایر تیمارها برتری معنی‌داری (p ≤ 0.05) داشت. علاوه بر این، مقادیر pH پایین‌تر به طور قابل توجهی پایداری رنگدانه را افزایش داد، به طوری که بالاترین غلظت (23.05 میلی‌گرم در 100 گرم) در pH 2 مشاهده شد که در pH 9 به 8.42 میلی‌گرم در 100 گرم کاهش یافت. به طور مشابه، دمای نگهداری پایین‌تر به پایداری بیشتر آنتوسیانین کمک کرد، زیرا غلظت در دمای 18- درجه سانتیگراد به 21.06 میلی‌گرم در 100 گرم رسید، در حالی که در دمای 100 درجه سانتیگراد به 4.67 میلی‌گرم در 100 گرم کاهش یافت، طبق حداقل تفاوت معنی‌دار (LSD = 0.298). این یافته‌ها بر اهمیت پارامترهای استخراج و شرایط محیطی در بازیابی و پایداری آنتوسیانین‌ها از سماق تأکید دارند
کلیدواژه‌ها

موضوعات


عنوان مقاله English

EXTRACTION OF ANTHOCYANINS FROM SUMAC FRUITS (Rhus coriaria L.) AND EVALUATION OF SOME FACTORS INFLUENCING THEIR STABILITY

نویسندگان English

Salah Mahdi Al-Jannah 1
Baidiaa H. M. 2
1 Dept. Food Sci., Coll. Agric. Engin. Sci., University of Baghdad, Iraq.
2 Dept. Food Sci., Coll. Agric. Engin. Sci., University of Baghdad, Iraq.
چکیده English

This study aimed to extract anthocyanin pigments from the powder of the fruit of sumac (Rhus coriaria L.) using different solvents at different solid-to-solvent ratios (1:10, 1:20, 1:30). Extractions were performed at temperatures of 30, 50, and 70°C for 30 and 60 min to determine the optimal conditions for achieving the highest pigment concentration. This study also evaluated the stability of anthocyanins at different pH values ​​(1-9) and storage temperatures ranging from -18 to 100°C for 60 min. The results showed that the best extraction conditions were obtained using ethanol acidified with 5% citric acid at a ratio of 1:10, a temperature of 70°C and a time of 60 minutes, which yielded an anthocyanin concentration of 20.67 mg/100 g, which was significantly superior (p ≤ 0.05) compared to other treatments. In addition, lower pH values ​​significantly increased the stability of the pigment, such that the highest concentration (23.05 mg/100 g) was observed at pH 2, which decreased to 8.42 mg/100 g at pH 9. Similarly, lower storage temperature contributed to greater stability of anthocyanins, as the concentration reached 21.06 mg/100 g at -18 °C, while it decreased to 4.67 mg/100 g at 100 °C, according to least significant difference (LSD = 0.298). These findings emphasize the importance of extraction parameters and environmental conditions in the recovery and stability of anthocyanins from sumac

کلیدواژه‌ها English

Anthocyanins
Sumac (Rhus coriaria L.)
Natural Colorant
Food Industry
pH
Thermal Stability
[1]  Hashemi, M. (2022). Stability of Sumac (Rhus coriaria) Polyphenolic Extract during Simulated Gastrointestinal Digestion and Colonic Fermentation (Doctoral dissertation).
[2]  Sakhr, K., & El Khatib, S. (2020). Physiochemical properties and medicinal, nutritional and industrial applications of Lebanese Sumac (Syrian Sumac-Rhus coriaria): A review. Heliyon, 6(1).
[3]  Alsamri, H., Athamneh, K., Pintus, G., Eid, A. H., & Iratni, R. (2021). Pharmacological and antioxidant activities of Rhus coriaria L.(Sumac). Antioxidants, 10(1), 73.
[4]  Ozcan, A., Susluoglu, Z., Nogay, G., Ergun, M., & Sutyemez, M. (2021). Phytochemical characterization of some sumac (Rhus coriaria L.) genotypes from southern part of turkey. Food Chemistry, 358, 129779.
[5]  Jaberı, R., Kaban, G., & Kaya, M. (2022). Effects of some extraction parameters on anthocyanin content of barberry (Berberis Vulgaris L.) and Its Antioxidant Activity. Türkiye Tarımsal Araştırmalar Dergisi, 9(1), 4148. 
[6]  Al-Shurait, E. A., and R. M.  Al-Ali.2022. Optimal conditions for anthocyanins extracting from some food wastes. Caspian Journal of Environmental Sciences, 20(3), 503-512. DOI: 10.22124/cjes.2022.5681
[7]  Ramadan, K. M. A., and E. M. El-Hadidy. 2015. Color stability of anthocyanin-based extracts in nontraditional sourches: improvement of thermal stability by tannic acid. Journal Biology Chemistry Enviroment Science, 10(3), 1-19.
[8]  Huang, A. S., and J. H. Von Elbe. 1986. Stability comparison of two betacyanine pigments—amaranthine and betanine. Journal of Food Science, 51(3), 670-674. https://doi.org/10.1111/j.1365-2621.1986.tb13908.x
[9]  Akther S.; F. Sultana, M. R. Badsha, J. S. Jothi, and M. A. Alim. 2020. Anthocyanin stability profile of mango powder: temperature, pH, light, solvent and sugar content effects. Turkish Journal of Agriculture-Food Science and Technology, 8(9): 1871-1877. https://doi.org/10.24925/turjaf.v8i9.1871-1877.3487
[10]  SAS. 2016. Statistical Analysis System, User's Guide. Statistical. Version 9. 1th ed. SAS. Inst. Inc. Cary. N.C. USA.
[11] Pérez, B., Endara, A., Garrido, J., and L Ramírez-Cárdenas.2021. Extraction of anthocyanins from Mortiño (Vaccinium floribundum) and determination of their antioxidant capacity. Revista Facultad Nacional de Agronomía Medellín, 74(1): 9453-9460. DOI: 10.15446/rfnam.v74n1.89089
[12]  Hussain, S., Sharma, M., Jarg, T., Aav, R., and R. Bhat. 2023. Natural pigments (anthocyanins and chlorophyll) and antioxidants profiling of European red and green gooseberry (Ribes uva-crispa L.) extracted using green techniques (UAE-citric acid-mediated extraction). Current Research in Food Science, 7, 100629. https://doi.org/10.1016/j.crfs.2023.100629
[13] Molina, A. K., Corrêa, R. C., Prieto, M. A., Pereira, C., & Barros, L. (2023). Bioactive natural pigments’ extraction, isolation, and stability in food applications. Molecules, 28(3), 1200. https://doi.org/10.3390/molecules28031200
[14] Mazzara, E., Caprodossi, A., Mustafa, A. M., Maggi, F., and G. Caprioli.2023. Phytochemical investigation of Sumac (Rhus coriaria L.) fruits from different Sicilian accessions. Foods, 12(23), 4359. https://doi.org/10.3390/foods12234359 
[15]  Kossah, R., Nsabimana, C., Zhang, H., and W. Chen. 2010. Optimization of extraction of polyphenols from Syrian sumac (Rhus coriaria L.) and Chinese sumac (Rhus typhina L.) fruits. Research Journal of Phytochemistry, 4(3), 146-153. DOI: 10.3923/rjphyto.2010.146.153.
[16] Aparna, G. S., and P. R. Lekshmi. 2023. Effect of Acidification and Types of Solvent on Anthocyanin Yield, Total Phenols, Flavonoids, Antioxidant Activity and Colour Values of Extracts from Mangosteen Pericarp (Garcinia mangostana L.). Asian Journal of Dairy & Food Research, 42(2). DOI:10.18805/ajdfr.DR-2034
[17]  Kareem, A. A., and K. A. Shakir. 2016. Studying the factors effecting the production of okra protein concentrate and isolate and their thermal properties. Iraqi Journal of Agricultural Sciences, 47(6): 1505-1513.  DOI:
https://doi.org/10.36103/ijas.v47i6.480
[18]   Batiha, G. E. S., Ogunyemi, O. M., Shaheen, H. M., Kutu, F. R., Olaiya, C. O., Sabatier, J. M., & De Waard, M. (2022). Rhus coriaria L.(Sumac), a versatile and resourceful food spice with cornucopia of polyphenols. Molecules, 27(16), 5179.
[19] Meng, L., Ding, P., Tan, Y., Zhang, Y., and J. Zhao. 2025. Study on the Ultrasonic-Assisted Extraction Process of Anthocyanin from Purple Cabbage with Deep Eutectic Solvent. Molecules, 30(6), 1281. https://doi.org/10.3390/molecules30061281
[20]   Ekici, L., Simsek, Z., Ozturk, I., Sagdic, O., and H. Yetim. 2014. Effects of temperature, time, and pH on the stability of anthocyanin extracts: Prediction of total anthocyanin content using nonlinear models. Food Analytical Methods, 7(6), 1328-1336. DOI: 10.1007/s12161-013-9753-y
[21]  Nthimole, C. T., Kaseke, T., and . O. A.  Fawole. 2024. Exploring the extraction and application of Anthocyanins in food systems. Processes, 12(11), 2444.  https://doi.org/10.3390/pr12112444
[22]  Karaaslan, N. M., and M. Yaman. 2017. Anthocyanin profile of strawberry fruit as affected by extraction conditions. International Journal of Food Properties, 20(sup3): S2313-
S2322.https://doi.org/10.1080/10942912.2017.1368548
[23]  Pashazadeh, H., Redha, A. A., Johnson, J. B., and I Koca. 2025. Extraction optimization and microencapsulation of anthocyanins from okra flowers: Utilizing plant waste as a source of bioactive compounds. Food Bioscience, 63: 105710. https://doi.org/10.1016/j.fbio.2024.105710 
[24]   Saidji, N., Malki, F., Boukerche, H., and H. Mokrane. 2024. Insight into stability and degradation kinetics of Roselle (Hibiscus sabdariffa L.) flowers anthocyanin, effect of pH, heating, storage conditions, and co-pigment treatment. Biomass Conversion and Biorefinery, 14(23): 30613-30625. DOI: 10.1007/s13399-023-04946-8 .
[25]  Aljabary, A. M. A. O. (2023). Maintenance of pomegranate fruit quality by coating with flaxseed, black seed oils, and chitosan during different storage periods. Iraqi Journal of Agricultural Sciences, 54(6), 1689-1702. DOI: https://doi.org/10.36103/ijas.v54i6.1868.
[26]  Pereira, A. R., Bravo, C., Ramos, R. M., Costa, C., Rodrigues, A., de Freitas, V., and J. Oliveira. 2024. New insights into pH-dependent complex formation between lignosulfonates and anthocyanins: Impact on color and oxidative stability. Journal of Agricultural and Food Chemistry, 72(48), 26820-26831.  https://doi.org/10.1021/acs.jafc.4c05842.
[27]  Hadi, L. I., and M. J.  Al-Saadi. 2024. Effect of dietary sumac and fibrolytic enzymes on some productive and haematological traits of lambs. Iraqi Journal of Agricultural Sciences, 55(2): 683-690. DOI: https://doi.org/10.36103/4hf1tp36.
[28] Rodriguez-Amaya, D. B. (2019). Update on natural food pigments-A mini-review on carotenoids, anthocyanins, and betalains. Food Research International, 124, 200-205. https://doi.org/10.1016/j.foodres.2018.05.028.
[29] Hadi, M. T., Jabarah, Z. A., and S. H. Awad. 2025. synthesis and characterization of new polymeric coatings from anthocyanin dye and study biological activity. Iraqi Journal of Agricultural Sciences, 56(Special): 33-43. DOI: https://doi.org/10.36103/79rwpa28.
[30]    Rashidinejad, A., and J. Simal-Gandara. 2023. Handbook of Food Bioactive Ingredients. S. M. Jafari (Ed.). Springer Nature. DOI: https://doi.org/10.1007/978-3-031-28109-9 
[31]   Wahyuningsih, S., Wulandari, L., Wartono, M. W., Munawaroh, H., and A. H. Ramelan .2017. The effect of pH and color stability of anthocyanin on food colorant. In IOP conference series: Materials science and engineering
(Vol. 193, No. 1, p. 012047). IOP Publishing.  DOI 10.1088/1757-899X/193/1/012047
[32] Rodríguez J. M. L.; F.J. Barba, and P. Munekata. (Eds.). 2020. Anthocyanins: Antioxidant Properties, Sources and Health Benefits. Nova Science Publishers. 21;25(17):3809.doi: 10.3390/molecules25173809 
[33] Alappat, B., & Alappat, J. (2020). Anthocyanin pigments: Beyond aesthetics. Molecules, 25(23), 5500. https://doi.org/10.3390/molecules25235500
[34]   Pereira, A. R., Bravo, C., Ramos, R. M., Costa, C., Rodrigues, A., de Freitas, V., and J. Oliveira. 2024. New insights into pH-dependent complex formation between lignosulfonates and anthocyanins: Impact on color and oxidative stability. Journal of Agricultural and Food Chemistry, 72(48), 26820-26831.  https://doi.org/10.1021/acs.jafc.4c05842
[35]  Liu Y.; Y. Liu, C. Tao, M. Liu, Y. Pan, and Z. Lv. 2018. Effect of temperature and pH on stability of anthocyanin obtained from blueberry. Journal of Food Measurement and Characterization, 12(3): 1744-1753. https://doi.org/10.1007/S11694-018-9789-1.
[36]Albandary, N. A. (2023). Phenolic compounds content, antioxidant, antibacterial and antifungal activities of red onions skin. Iraqi Journal of Agricultural Sciences, 54(4), 1050-1057.DOI: https://doi.org/10.36103/ijas.v54i4.1794.