مجله علوم و صنایع غذایی ایران

مجله علوم و صنایع غذایی ایران

مدل‌سازی رهایش اسانس رزماری از فیلم‌های چندلایه زئین-پکتین:تأثیر توالی لایه‌ها و روش درونپوشانی بر خواص فیلم

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشیار، تکنولوژی موادغذایی، دانشکده کشاورزی، دانشگاه صنعتی شاهرود.
2 کارشناسی ارشد علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی شاهرود.
3 استادیار، مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه صنعتی شاهرود.
10.48311/fsct.2025.84050.0
چکیده
فیلم‌های فعال زیست‌تخریب‌پذیر حاوی اسانس‌ها اغلب با چالش‌هایی نظیر نگهداری ضعیف اسانس و خواص فیزیکومکانیکی نامطلوب مواجه هستند. در این مطالعه، تأثیر ترتیب لایه‌ها و روش کپسوله‌سازی (نانوامولسیون در مقایسه با امولسیون پیکرینگ) بر سینتیک رهایش و خواص فیزیکومکانیکی فیلم‌های چندلایه زئین-پکتین حاوی اسانس رزماری مورد بررسی قرار گرفت. نانوذرات کمپلکس زئین-صمغ دانه ریحان (با قطر متوسط  nm  D50 = 306.9 و پتانسیل زتا ζ= -15.1 mV) به‌منظور پایدارسازی امولسیون‌های پیکرینگ (D50=1046,50 nm) سنتز شدند، در حالی که نانوامولسیون‌های (D50=90,10 nm) پایدارشده با توئین 80، ‌عنوان نمونه کنترل استفاده شدند. تحلیل رئولوژیکی نشان داد که امولسیون‌های پیکرینگ رفتار برشی-رقیق از خود نشان دادند، در حالی که نانوامولسیون‌ها دارای جریان تقریباً نیوتنی بودند. فیلم‌های چندلایه‌ای که پکتین در لایه زیرین آن‌ها به‌کار رفته بود، در مقایسه با فیلم‌های با لایه زیرین زئین، دارای سطحی صاف‌تر، استحکام کششی بالاتر و نفوذپذیری نسبت به بخار آب کمتری بودند که به همگنی بالاتر پکتین نسبت داده شد. افزودن امولسیون پیکرینگ موجب افزایش استحکام کششی و کاهش نفوذپذیری، به‌دلیل تعامل ذرات با ماتریس شد. در حالی که نانوامولسیون‌ها به‌عنوان نرم‌کننده عمل کرده و انعطاف‌پذیری را افزایش دادند. رهایش اسانس رزماری از مدل انتشار شبه-فیکی تبعیت کرد. فیلم‌های دارای لایه زیرین پکتین و نانوامولسیون‌ها، رهایش سریع‌تری را نشان دادند. در حالی که لایه‌های زئین و امولسیون‌های پیکرینگ باعث افزایش پایداری و نگهداری اسانس شدند. نتایج این پژوهش نشان داد که با تنظیم راهبردی ترتیب لایه‌ها و انتخاب نوع امولسیون می‌توان رهایش اسانس و عملکرد فیلم‌های فعال را بهبود بخشید و راه‌حل‌هایی هدفمند برای بسته‌بندی فعال مواد غذایی ارائه داد
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Modeling the Release of Rosemary Essential Oil from Zein-Pectin Multilayer Films: Effect of Layer Sequence and Encapsulation Method on Film Properties

نویسندگان English

Ahmad Rajaei Najafabadi 1
narges nazari 2
hossein mirzaee moghaddam 3
1 Associate Professor, School of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran
2 Master of Food Science and Engineering, School of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran
3 Assistant Professor, School of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده English

Biodegradable active films incorporating essential oils (EOs) often face challenges such as poor EO retention and inadequate physicomechanical properties. This study investigated the influence of layer sequence and encapsulation method (nanoemulsion vs. Pickering emulsion) on the release kinetics, physicomechanical properties of zein-pectin multilayer films containing rosemary essential oil (REO). Zein-basil seed gum (BSG) complex nanoparticles (D50 = 306.9 nm, ζ = -15.1 mV) were synthesized to stabilize Pickering emulsions (D50 = 1046.5 nm), while Tween 80-stabilized nanoemulsions (D50 = 90.1 nm) served as a control. Rheological analysis revealed shear-thinning behavior in Pickering emulsions, contrasting with the near-Newtonian flow of nanoemulsions. Multilayer films with pectin as the bottom layer exhibited smoother surfaces, higher tensile strength (TS), and lower water vapor permeability (WVP) compared to zein-bottomed films, attributed to pectin’s superior homogeneity. Pickering emulsion incorporation enhanced TS and reduced WVP due to particle-matrix interactions, while nanoemulsions acted as plasticizers, increasing flexibility. REO release followed pseudo-Fickian diffusion, with pectin-bottomed films and nanoemulsions facilitating faster release, whereas zein layers and Pickering emulsions prolonged retention. These findings demonstrate that strategic layer arrangement and emulsion selection can improve EO delivery and film performance, offering tailored solutions for active food packaging.

کلیدواژه‌ها English

Active packaging
Biodegradable films
Nanoemulsion
Pickering emulsion
[1] Alias, A. R., Wan, M. K., & Sarbon, N. M. (2022). Emerging materials and technologies of multi-layer film for food packaging application: A review. Food Control, 136, 108875.
[2] Gupta, V., Biswas, D., & Roy, S. (2022). A comprehensive review of biodegradable polymer-based films and coatings and their food packaging applications. Materials, 15(17), 5899.
[3] Yang, Y., Du, Y., Gupta, V. K., Ahmad, F., Amiri, H., Pan, J., & Rajaei, A. (2024). Exploring blockchain and artificial intelligence in intelligent packaging to combat food fraud: A comprehensive review. Food Packaging and Shelf Life, 43, 101287.
[4] Mutlu-Ingok, A., Devecioglu, D., Dikmetas, D. N., Karbancioglu-Guler, F., & Capanoglu, E. (2020). Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules, 25(20), 4711.
[5] Akhter, R., Masoodi, F. A., & Wani, T. A. (2024). Chitosan, gelatin and pectin based bionanocomposite films with rosemary essential oil as an active ingredient for future foods. International Journal of Biological Macromolecules, 132813.
[6] Shahrampour, D., & Razavi, S. M. A. (2023). Fabrication and characterization of novel biodegradable active films based on Eremurus luteus root gum incorporated with nanoemulsions of rosemary essential oil. Progress in Organic Coatings, 175, 107360.
[7] Zhang, X., Ismail, B. B., Cheng, H., Jin, T. Z., Qian, M., Arabi, S. A., & Guo, M. (2021). Emerging chitosan-essential oil films and coatings for food preservation-A review of advances and applications. Carbohydrate Polymers, 273, 118616.
[8] Zhang, W., Jiang, H., Rhim, J.-W., Cao, J., & Jiang, W. (2022). Effective strategies of sustained release and retention enhancement of essential oils in active food packaging films/coatings. Food Chemistry, 367, 130671.
[9] Hosseini, E., Rajaei, A., Tabatabaei, M., Mohsenifar, A., & Jahanbin, K. (2019). Preparation of Pickering Flaxseed Oil-in-Water Emulsion Stabilized by Chitosan-Myristic Acid Nanogels and Investigation of Its Oxidative Stability in Presence of Clove Essential Oil as Antioxidant. Food Biophysics, 1–13.
[10] Sharkawy, A., Barreiro, M. F., & Rodrigues, A. E. (2020). Chitosan-based Pickering emulsions and their applications: A review. Carbohydrate Polymers, 116885.
[11] Pandita, G., de Souza, C. K., Gonçalves, M. J., Jasińska, J. M., Jamróz, E., & Roy, S. (2024). Recent progress on Pickering emulsion stabilized essential oil added biopolymer-based film for food packaging applications: A review. International Journal of Biological Macromolecules, 132067.
[12] Sharkawy, A., & Rodrigues, A. E. (2024). Plant gums in Pickering emulsions: A review of sources, properties, applications, and future perspectives. Carbohydrate Polymers, 121900.
[13] Yang, Y., Gupta, V. K., Du, Y., Aghbashlo, M., Show, P. L., Pan, J., & Rajaei, A. (2023). Potential application of polysaccharide mucilages as a substitute for emulsifiers: A review. International Journal of Biological Macromolecules, 124800.
[14] Chen, H., Wang, Q., Rao, Z., Lei, X., Zhao, J., Lei, L., & Ming, J. (2023). The linear/nonlinear rheological behaviors of Pickering emulsion stabilized by Zein and Xanthan gum: Effect of interfacial assembly strategies. Food Hydrocolloids, 145, 109116.
[15] Wu, B., Zhang, S., Jiang, X., Hou, P., Xin, Y., Zhang, L., & Zhou, D. (2022). Impact of weakly charged insoluble karaya gum on zein nanoparticle and mechanism for stabilizing Pickering emulsions. International Journal of Biological Macromolecules, 222, 121–131.
[16] Almasi, H., Azizi, S., & Amjadi, S. (2020). Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocolloids, 99, 105338.
[17] Alinaqi, Z., Khezri, A., & Rezaeinia, H. (2021). Sustained release modeling of clove essential oil from the structure of starch-based bio-nanocomposite film reinforced by electrosprayed zein nanoparticles. International Journal of Biological Macromolecules, 173, 193–202.
[18] Papadaki, A., Lappa, I. K., Manikas, A. C., Carbone, M. G. P., Natsia, A., Kachrimanidou, V., & Kopsahelis, N. (2024). Grafting bacterial cellulose nanowhiskers into whey protein/essential oil film composites: Effect on structure, essential oil release and antibacterial properties of films. Food Hydrocolloids, 147, 109374.
[19] Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2013). Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage. International Journal of Biological Macromolecules, 62, 500–507.
[20] Mirzaee Moghaddam, H., & Rajaei., A. (2021). Effect of Pomegranate Seed Oil Encapsulated in Chitosan-capric Acid Nanogels Incorporating Thyme Essential Oil on Physicomechanical and Structural Properties of Jelly Candy. Journal of Agricultural Machinery, 11(2), 37-49. doi:10.22067/jam.v4i1.33163
[21] Javadi Farsani, M., Mirzaee Moghaddam, H., & Rajaei Najafabadi, A. (2023). Study of some qualitative and organoleptic properties of enriched apple leather. Journal of food science and technology (Iran), 19(133), 175-186.
[22] Nazari, N., Rajaei, A., & Mirzaee Moghaddam, H. (2025). Comparative Effects of Basil Seed and Cress Seed Gums on Stability of Flaxseed Oil Pickering Emulsion and Functional Kiwifruit Bar Characteristics. Food Biophysics, 20(2), 1–15.
[23] Mirzaee Moghaddam, H. (2019). Investigation of PhysicoMechanical Properties of Functional Gummy Candy Fortified with Encapsulated Fish Oil in Chitosan-Stearic Acid Nanogel by Pickering Emulsion Method. Journal of food science and technology (Iran). 16 (90) 53-64. https://doi.org/10.1111/j.1365-2621.1989.tb05978.x
[24] Cai, J., Xiao, J., Chen, X., & Liu, H. (2020). Essential oil loaded edible films prepared by continuous casting method: Effects of casting cycle and loading position on the release properties. Food Packaging and Shelf Life, 26, 100555.
[25] Nahalkar, A. Rajaei, A., & Mirzaee Moghaddam, H. (in press a). Investigation of the possibility of producing a stabilized walnut oil emulsion with chia seed mucilage and its application in edible films. Journal of Food Science and Technology (FSCT). Article ID: 78673.
[26] Du, H., Liu, C., Unsalan, O., Altunayar-Unsalan, C., Xiong, S., Manyande, A., & Chen, H. (2021). Development and characterization of fish myofibrillar protein/chitosan/rosemary extract composite edible films and the improvement of lipid oxidation stability during the grass carp fillets storage. International Journal of Biological Macromolecules, 184, 463–475. https://doi.org/10.1016/j.ijbiomac.2021.06.121
[27] Nahalkar, A. Rajaei, A., & Mirzaee Moghaddam, H. (in press b). Investigation of some structural and physicomechanical properties of bilayer and composite edible films based on sodium carboxymethyl cellulose. Journal of Agricultural Machinery. Doi: 10.22067/jam.2025.90690.1312.
[28] Yan, J., Li, M., Wang, H., Lian, X., Fan, Y., Xie, Z., & Li, W. (2021). Preparation and property studies of chitosan-PVA biodegradable antibacterial multilayer films doped with Cu2O and nano-chitosan composites. Food Control, 126, 108049.
[29] Mohsenabadi, N., Rajaei, A., Tabatabaei, M., & Mohsenifar, A. (2018). Physical and antimicrobial properties of starch-carboxy methyl cellulose film containing rosemary essential oils encapsulated in chitosan nanogel. International Journal of Biological Macromolecules, 112, 148–155.
[30] Zhang, J., Huang, X., Shi, J., Liu, L., Zhang, X.,  & Zou, X. (2021). A visual bi-layer indicator based on roselle anthocyanins with high hydrophobic property for monitoring griskin freshness. Food Chemistry, 355, 129573.
[31] Mirzaee Moghaddam, H., Khoshtaghaza, M. H., Barzegar, M., & Salimi, A. (2014). effect of potassium permanganate nano-zeolite and storage time on physicochemical properties of kiwifruit (Hayward). Journal of Agricultural Machinery. 4(1): 37-49.
[32] Barman, M., Das, A. B., & Badwaik, L. S. (2021). Effect of xanthan gum, guar gum, and pectin on physicochemical, color, textural, sensory, and drying characteristics of kiwi fruit leather. Journal of Food Processing and Preservation, 45(5), e15478.
 [33] Shen, Y., Ni, Z.-J., Thakur, K., Zhang, J.-G., Hu, F., & Wei, Z.-J. (2021). Preparation and characterization of clove essential oil loaded nanoemulsion and pickering emulsion activated pullulan-gelatin based edible film. International Journal of Biological Macromolecules, 181, 528–539.
[34] Mirzaee Moghaddam, H., Khoshtaghaza, M. H., Salimi, A., & Barzegar, M. (2014). The TiO2–Clay-LDPE nanocomposite packaging films: investigation on the structure and physicomechanical properties. Polymer-Plastics Technology and Engineering, 53(17), 1759-1767.
[35] Kowalczyk, D., Kordowska-Wiater, M., Karaś, M., Zikeba, E., Mkeżyńska, M., & Wikacek, A. E. (2020). Release kinetics and antimicrobial properties of the potassium sorbate-loaded edible films made from pullulan, gelatin and their blends. Food Hydrocolloids, 101, 105539.
[36] Low, L. E., Siva, S. P., Ho, Y. K., Chan, E. S., & Tey, B. T. (2020). Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion. Advances in Colloid and Interface Science, 277, 102117. https://doi.org/10.1016/j.cis.2020.102117
[37] Abedini, A. A., Pircheraghi, G., Kaviani, A., & Hosseini, S. (2023). Exploration of curcumin-incorporated dual anionic alginate-quince seed gum films for transdermal drug delivery. International Journal of Biological Macromolecules, 248, 125798.
[38] Cui, F., Zhao, S., Guan, X., McClements, D. J., Liu, X., Liu, F., & Ngai, T. (2021). Polysaccharide-based Pickering emulsions: Formation, stabilization and applications. Food Hydrocolloids, 119, 106812.
[39] Sanchez, A., Garc’ia, M. C., Mart’in-Piñero, M. J., Muñoz, J., & Alfaro-Rodr’iguez, M.-C. (2022). Elaboration and characterization of nanoemulsion with orange essential oil and pectin. Journal of the Science of Food and Agriculture, 102(9), 3543–3550.
[40] Li, H., Wu, C., Yin, Z., Wu, J., Zhu, L., Gao, M., & Zhan, X. (2022). Emulsifying properties and bioavailability of clove essential oil Pickering emulsions stabilized by octadecylaminated carboxymethyl curdlan. International Journal of Biological Macromolecules, 216, 629–642.
[41] Zhao, X., Li, D., Wang, L., & Wang, Y. (2023). Role of gelation temperature in rheological behavior and microstructure of high elastic starch-based emulsion-filled gel. Food Hydrocolloids, 135, 108208.
[42] Canhadas Bertan, L., Matta Fakhouri, F., Siani, A. C., & Ferreira Grosso, C. R. (2005). Influence of the addition of lauric acid to films made from gelatin, triacetin and a blend of stearic and palmitic acids. In Macromolecular symposia (Vol. 229, pp. 143–149).
[43] Acosta, S., Jiménez, A., Cháfer, M., González-Mart’inez, C., & Chiralt, A. (2015). Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids, 49, 135–143.
[44] Zhu, J.-Y., Tang, C.-H., Yin, S.-W., & Yang, X.-Q. (2018). Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions. Carbohydrate Polymers, 181, 727–735.
[45] Aghajani, F., Rafati, H., Aliahmadi, A., & Moghimi, R. (2024). Novel Nanoemulsion-Loaded Hydroxyl propyl methyl cellulose Films as Bioactive Food Packaging Materials Containing Satureja khuzestanica Essential Oil. Carbohydrate Polymer Technologies and Applications, 100544.
[46] da Silva, T. N., Reynaud, F., de Souza Picciani, P. H., e Silva, K. G. de H., & Barradas, T. N. (2020). Chitosan-based films containing nanoemulsions of methyl salicylate: Formulation development, physical-chemical and in vitro drug release characterization. International Journal of Biological Macromolecules, 164, 2558–2568.
[47] Acevedo-Fani, A., Salvia-Trujillo, L., Rojas-Graü, M. A., & Mart’in-Belloso, O. (2015). Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocolloids, 47, 168–177.
[48] Aydogdu, A., Radke, C. J., Bezci, S., & Kirtil, E. (2020). Characterization of curcumin incorporated guar gum/orange oil antimicrobial emulsion films. International Journal of Biological Macromolecules, 148, 110–120. https://doi.org/10.1016/j.ijbiomac.2019.12.255
[49] Yadav, M., Behera, K., Chang, Y.-H., & Chiu, F.-C. (2020). Cellulose nanocrystal reinforced chitosan based UV barrier composite films for sustainable packaging. Polymers, 12(1), 202.
[50] Liu, Q.-R., Wang, W., Qi, J., Huang, Q., & Xiao, J. (2019). Oregano essential oil loaded soybean polysaccharide films: Effect of Pickering type immobilization on physical and antimicrobial properties. Food Hydrocolloids, 87, 165–172.
[51] Ghadetaj, A., Almasi, H., & Mehryar, L. (2018). Development and characterization of whey protein isolate active films containing nanoemulsions of Grammosciadium ptrocarpum Bioss. essential oil. Food Packaging and Shelf Life, 16, 31–40.
[52] Ulrich, G. D., Lemos, A. G., Silva-Alvarez, A. C. F., Paiva, L. B., Gavioli, R. R., da Silva, L. L., & Francisco, K. R. (2023). Zein/hydroxypropylcellulose biofilms with hydrophilic and hydrophobic montmorillonite clays. Polymer Composites, 44(5), 2634–2644.
[53] Tang, Y., Lu, Y., Li, L., Shi, C., Zhang, X., Li, X., & Xu, W. (2022). Electrostatic Induced Peptide Hydrogels for pH-Controllable Doxorubicin Release and Antitumor Activity. ChemistrySelect, 7(36), e202202284.
[54] Abdul Rasool, B. K., Mohammed, A. A., & Salem, Y. Y. (2021). The optimization of a dimenhydrinate transdermal patch formulation based on the quantitative analysis of in vitro release data by DDSolver through skin penetration studies. Scientia Pharmaceutica, 89(3), 33.
[55] Zhang, J., Zhang, J., Huang, X., Shi, J., Muhammad, A., Zhai, X., & Zou, X. (2023). Study on cinnamon essential oil release performance based on pH-triggered dynamic mechanism of active packaging for meat preservation. Food Chemistry, 400, 134030.
[56] Zhang, Y., Pu, Y., Jiang, H., Chen, L., Shen, C., Zhang, W., & Jiang, W. (2024). Improved sustained-release properties of ginger essential oil in a Pickering emulsion system incorporated in sodium alginate film and delayed postharvest senescence of mango fruits. Food Chemistry, 435, 137534.