[1] Alias, A. R., Wan, M. K., & Sarbon, N. M. (2022). Emerging materials and technologies of multi-layer film for food packaging application: A review. Food Control, 136, 108875.
[2] Gupta, V., Biswas, D., & Roy, S. (2022). A comprehensive review of biodegradable polymer-based films and coatings and their food packaging applications. Materials, 15(17), 5899.
[3] Yang, Y., Du, Y., Gupta, V. K., Ahmad, F., Amiri, H., Pan, J., & Rajaei, A. (2024). Exploring blockchain and artificial intelligence in intelligent packaging to combat food fraud: A comprehensive review. Food Packaging and Shelf Life, 43, 101287.
[4] Mutlu-Ingok, A., Devecioglu, D., Dikmetas, D. N., Karbancioglu-Guler, F., & Capanoglu, E. (2020). Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules, 25(20), 4711.
[5] Akhter, R., Masoodi, F. A., & Wani, T. A. (2024). Chitosan, gelatin and pectin based bionanocomposite films with rosemary essential oil as an active ingredient for future foods. International Journal of Biological Macromolecules, 132813.
[6] Shahrampour, D., & Razavi, S. M. A. (2023). Fabrication and characterization of novel biodegradable active films based on Eremurus luteus root gum incorporated with nanoemulsions of rosemary essential oil. Progress in Organic Coatings, 175, 107360.
[7] Zhang, X., Ismail, B. B., Cheng, H., Jin, T. Z., Qian, M., Arabi, S. A., & Guo, M. (2021). Emerging chitosan-essential oil films and coatings for food preservation-A review of advances and applications. Carbohydrate Polymers, 273, 118616.
[8] Zhang, W., Jiang, H., Rhim, J.-W., Cao, J., & Jiang, W. (2022). Effective strategies of sustained release and retention enhancement of essential oils in active food packaging films/coatings. Food Chemistry, 367, 130671.
[9] Hosseini, E., Rajaei, A., Tabatabaei, M., Mohsenifar, A., & Jahanbin, K. (2019). Preparation of Pickering Flaxseed Oil-in-Water Emulsion Stabilized by Chitosan-Myristic Acid Nanogels and Investigation of Its Oxidative Stability in Presence of Clove Essential Oil as Antioxidant. Food Biophysics, 1–13.
[10] Sharkawy, A., Barreiro, M. F., & Rodrigues, A. E. (2020). Chitosan-based Pickering emulsions and their applications: A review. Carbohydrate Polymers, 116885.
[11] Pandita, G., de Souza, C. K., Gonçalves, M. J., Jasińska, J. M., Jamróz, E., & Roy, S. (2024). Recent progress on Pickering emulsion stabilized essential oil added biopolymer-based film for food packaging applications: A review. International Journal of Biological Macromolecules, 132067.
[12] Sharkawy, A., & Rodrigues, A. E. (2024). Plant gums in Pickering emulsions: A review of sources, properties, applications, and future perspectives. Carbohydrate Polymers, 121900.
[13] Yang, Y., Gupta, V. K., Du, Y., Aghbashlo, M., Show, P. L., Pan, J., & Rajaei, A. (2023). Potential application of polysaccharide mucilages as a substitute for emulsifiers: A review. International Journal of Biological Macromolecules, 124800.
[14] Chen, H., Wang, Q., Rao, Z., Lei, X., Zhao, J., Lei, L., & Ming, J. (2023). The linear/nonlinear rheological behaviors of Pickering emulsion stabilized by Zein and Xanthan gum: Effect of interfacial assembly strategies. Food Hydrocolloids, 145, 109116.
[15] Wu, B., Zhang, S., Jiang, X., Hou, P., Xin, Y., Zhang, L., & Zhou, D. (2022). Impact of weakly charged insoluble karaya gum on zein nanoparticle and mechanism for stabilizing Pickering emulsions. International Journal of Biological Macromolecules, 222, 121–131.
[16] Almasi, H., Azizi, S., & Amjadi, S. (2020). Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocolloids, 99, 105338.
[17] Alinaqi, Z., Khezri, A., & Rezaeinia, H. (2021). Sustained release modeling of clove essential oil from the structure of starch-based bio-nanocomposite film reinforced by electrosprayed zein nanoparticles. International Journal of Biological Macromolecules, 173, 193–202.
[18] Papadaki, A., Lappa, I. K., Manikas, A. C., Carbone, M. G. P., Natsia, A., Kachrimanidou, V., & Kopsahelis, N. (2024). Grafting bacterial cellulose nanowhiskers into whey protein/essential oil film composites: Effect on structure, essential oil release and antibacterial properties of films. Food Hydrocolloids, 147, 109374.
[19] Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2013). Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage. International Journal of Biological Macromolecules, 62, 500–507.
[20] Mirzaee Moghaddam, H., & Rajaei., A. (2021). Effect of Pomegranate Seed Oil Encapsulated in Chitosan-capric Acid Nanogels Incorporating Thyme Essential Oil on Physicomechanical and Structural Properties of Jelly Candy. Journal of Agricultural Machinery, 11(2), 37-49. doi:10.22067/jam.v4i1.33163
[21] Javadi Farsani, M., Mirzaee Moghaddam, H., & Rajaei Najafabadi, A. (2023). Study of some qualitative and organoleptic properties of enriched apple leather. Journal of food science and technology (Iran), 19(133), 175-186.
[22] Nazari, N., Rajaei, A., & Mirzaee Moghaddam, H. (2025). Comparative Effects of Basil Seed and Cress Seed Gums on Stability of Flaxseed Oil Pickering Emulsion and Functional Kiwifruit Bar Characteristics. Food Biophysics, 20(2), 1–15.
[23] Mirzaee Moghaddam, H. (2019). Investigation of PhysicoMechanical Properties of Functional Gummy Candy Fortified with Encapsulated Fish Oil in Chitosan-Stearic Acid Nanogel by Pickering Emulsion Method. Journal of food science and technology (Iran). 16 (90) 53-64. https://doi.org/10.1111/j.1365-2621.1989.tb05978.x
[24] Cai, J., Xiao, J., Chen, X., & Liu, H. (2020). Essential oil loaded edible films prepared by continuous casting method: Effects of casting cycle and loading position on the release properties. Food Packaging and Shelf Life, 26, 100555.
[25] Nahalkar, A. Rajaei, A., & Mirzaee Moghaddam, H. (in press a). Investigation of the possibility of producing a stabilized walnut oil emulsion with chia seed mucilage and its application in edible films. Journal of Food Science and Technology (FSCT). Article ID: 78673.
[26] Du, H., Liu, C., Unsalan, O., Altunayar-Unsalan, C., Xiong, S., Manyande, A., & Chen, H. (2021). Development and characterization of fish myofibrillar protein/chitosan/rosemary extract composite edible films and the improvement of lipid oxidation stability during the grass carp fillets storage. International Journal of Biological Macromolecules, 184, 463–475. https://doi.org/10.1016/j.ijbiomac.2021.06.121
[27] Nahalkar, A. Rajaei, A., & Mirzaee Moghaddam, H. (in press b). Investigation of some structural and physicomechanical properties of bilayer and composite edible films based on sodium carboxymethyl cellulose. Journal of Agricultural Machinery. Doi: 10.22067/jam.2025.90690.1312.
[28] Yan, J., Li, M., Wang, H., Lian, X., Fan, Y., Xie, Z., & Li, W. (2021). Preparation and property studies of chitosan-PVA biodegradable antibacterial multilayer films doped with Cu2O and nano-chitosan composites. Food Control, 126, 108049.
[29] Mohsenabadi, N., Rajaei, A., Tabatabaei, M., & Mohsenifar, A. (2018). Physical and antimicrobial properties of starch-carboxy methyl cellulose film containing rosemary essential oils encapsulated in chitosan nanogel. International Journal of Biological Macromolecules, 112, 148–155.
[30] Zhang, J., Huang, X., Shi, J., Liu, L., Zhang, X., & Zou, X. (2021). A visual bi-layer indicator based on roselle anthocyanins with high hydrophobic property for monitoring griskin freshness. Food Chemistry, 355, 129573.
[31] Mirzaee Moghaddam, H., Khoshtaghaza, M. H., Barzegar, M., & Salimi, A. (2014). effect of potassium permanganate nano-zeolite and storage time on physicochemical properties of kiwifruit (Hayward). Journal of Agricultural Machinery. 4(1): 37-49.
[32] Barman, M., Das, A. B., & Badwaik, L. S. (2021). Effect of xanthan gum, guar gum, and pectin on physicochemical, color, textural, sensory, and drying characteristics of kiwi fruit leather. Journal of Food Processing and Preservation, 45(5), e15478.
[33] Shen, Y., Ni, Z.-J., Thakur, K., Zhang, J.-G., Hu, F., & Wei, Z.-J. (2021). Preparation and characterization of clove essential oil loaded nanoemulsion and pickering emulsion activated pullulan-gelatin based edible film. International Journal of Biological Macromolecules, 181, 528–539.
[34] Mirzaee Moghaddam, H., Khoshtaghaza, M. H., Salimi, A., & Barzegar, M. (2014). The TiO2–Clay-LDPE nanocomposite packaging films: investigation on the structure and physicomechanical properties. Polymer-Plastics Technology and Engineering, 53(17), 1759-1767.
[35] Kowalczyk, D., Kordowska-Wiater, M., Karaś, M., Zikeba, E., Mkeżyńska, M., & Wikacek, A. E. (2020). Release kinetics and antimicrobial properties of the potassium sorbate-loaded edible films made from pullulan, gelatin and their blends. Food Hydrocolloids, 101, 105539.
[36] Low, L. E., Siva, S. P., Ho, Y. K., Chan, E. S., & Tey, B. T. (2020). Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion. Advances in Colloid and Interface Science, 277, 102117. https://doi.org/10.1016/j.cis.2020.102117
[37] Abedini, A. A., Pircheraghi, G., Kaviani, A., & Hosseini, S. (2023). Exploration of curcumin-incorporated dual anionic alginate-quince seed gum films for transdermal drug delivery. International Journal of Biological Macromolecules, 248, 125798.
[38] Cui, F., Zhao, S., Guan, X., McClements, D. J., Liu, X., Liu, F., & Ngai, T. (2021). Polysaccharide-based Pickering emulsions: Formation, stabilization and applications. Food Hydrocolloids, 119, 106812.
[39] Sanchez, A., Garc’ia, M. C., Mart’in-Piñero, M. J., Muñoz, J., & Alfaro-Rodr’iguez, M.-C. (2022). Elaboration and characterization of nanoemulsion with orange essential oil and pectin. Journal of the Science of Food and Agriculture, 102(9), 3543–3550.
[40] Li, H., Wu, C., Yin, Z., Wu, J., Zhu, L., Gao, M., & Zhan, X. (2022). Emulsifying properties and bioavailability of clove essential oil Pickering emulsions stabilized by octadecylaminated carboxymethyl curdlan. International Journal of Biological Macromolecules, 216, 629–642.
[41] Zhao, X., Li, D., Wang, L., & Wang, Y. (2023). Role of gelation temperature in rheological behavior and microstructure of high elastic starch-based emulsion-filled gel. Food Hydrocolloids, 135, 108208.
[42] Canhadas Bertan, L., Matta Fakhouri, F., Siani, A. C., & Ferreira Grosso, C. R. (2005). Influence of the addition of lauric acid to films made from gelatin, triacetin and a blend of stearic and palmitic acids. In Macromolecular symposia (Vol. 229, pp. 143–149).
[43] Acosta, S., Jiménez, A., Cháfer, M., González-Mart’inez, C., & Chiralt, A. (2015). Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids, 49, 135–143.
[44] Zhu, J.-Y., Tang, C.-H., Yin, S.-W., & Yang, X.-Q. (2018). Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions. Carbohydrate Polymers, 181, 727–735.
[45] Aghajani, F., Rafati, H., Aliahmadi, A., & Moghimi, R. (2024). Novel Nanoemulsion-Loaded Hydroxyl propyl methyl cellulose Films as Bioactive Food Packaging Materials Containing Satureja khuzestanica Essential Oil. Carbohydrate Polymer Technologies and Applications, 100544.
[46] da Silva, T. N., Reynaud, F., de Souza Picciani, P. H., e Silva, K. G. de H., & Barradas, T. N. (2020). Chitosan-based films containing nanoemulsions of methyl salicylate: Formulation development, physical-chemical and in vitro drug release characterization. International Journal of Biological Macromolecules, 164, 2558–2568.
[47] Acevedo-Fani, A., Salvia-Trujillo, L., Rojas-Graü, M. A., & Mart’in-Belloso, O. (2015). Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocolloids, 47, 168–177.
[48] Aydogdu, A., Radke, C. J., Bezci, S., & Kirtil, E. (2020). Characterization of curcumin incorporated guar gum/orange oil antimicrobial emulsion films. International Journal of Biological Macromolecules, 148, 110–120. https://doi.org/10.1016/j.ijbiomac.2019.12.255
[49] Yadav, M., Behera, K., Chang, Y.-H., & Chiu, F.-C. (2020). Cellulose nanocrystal reinforced chitosan based UV barrier composite films for sustainable packaging. Polymers, 12(1), 202.
[50] Liu, Q.-R., Wang, W., Qi, J., Huang, Q., & Xiao, J. (2019). Oregano essential oil loaded soybean polysaccharide films: Effect of Pickering type immobilization on physical and antimicrobial properties. Food Hydrocolloids, 87, 165–172.
[51] Ghadetaj, A., Almasi, H., & Mehryar, L. (2018). Development and characterization of whey protein isolate active films containing nanoemulsions of Grammosciadium ptrocarpum Bioss. essential oil. Food Packaging and Shelf Life, 16, 31–40.
[52] Ulrich, G. D., Lemos, A. G., Silva-Alvarez, A. C. F., Paiva, L. B., Gavioli, R. R., da Silva, L. L., & Francisco, K. R. (2023). Zein/hydroxypropylcellulose biofilms with hydrophilic and hydrophobic montmorillonite clays. Polymer Composites, 44(5), 2634–2644.
[53] Tang, Y., Lu, Y., Li, L., Shi, C., Zhang, X., Li, X., & Xu, W. (2022). Electrostatic Induced Peptide Hydrogels for pH-Controllable Doxorubicin Release and Antitumor Activity. ChemistrySelect, 7(36), e202202284.
[54] Abdul Rasool, B. K., Mohammed, A. A., & Salem, Y. Y. (2021). The optimization of a dimenhydrinate transdermal patch formulation based on the quantitative analysis of in vitro release data by DDSolver through skin penetration studies. Scientia Pharmaceutica, 89(3), 33.
[55] Zhang, J., Zhang, J., Huang, X., Shi, J., Muhammad, A., Zhai, X., & Zou, X. (2023). Study on cinnamon essential oil release performance based on pH-triggered dynamic mechanism of active packaging for meat preservation. Food Chemistry, 400, 134030.
[56] Zhang, Y., Pu, Y., Jiang, H., Chen, L., Shen, C., Zhang, W., & Jiang, W. (2024). Improved sustained-release properties of ginger essential oil in a Pickering emulsion system incorporated in sodium alginate film and delayed postharvest senescence of mango fruits. Food Chemistry, 435, 137534.