مجله علوم و صنایع غذایی ایران

مجله علوم و صنایع غذایی ایران

فعالیت ضدباکتریایی شیر گاو و شیر بادام تخمیرشده بوسیله دانه‌های کفیر

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانش آموخته کارشناسی ارشد میکروبیولوژی، واحد مینودشت، دانشگاه آزاد اسلامی، مینودشت، ایران
2 دانشیار، گروه میکروبیولوژی، واحد آزادشهر، دانشگاه آزاد اسلامی، آزادشهر، ایران
3 دانش آموخته دکتری تخصصی پزشکی مولکولی، واحد گرگان، دانشگاه آزاد اسلامی، گرگان، ایران
10.48311/fsct.2025.83925.0
چکیده
نوشیدنی کفیر یک پروبیوتیک پیچیده از یک مجتمع همزیستی میکروبی است که عمدتاً از تخمیر شیر گاو توسط دانه‌های کفیر به دست می‌آید. برخی از افراد شیر گاو مصرف نمی کنند. شیر گیاهی می تواند جایگزین شیر حیوانی باشد. هدف از این مطالعه بررسی فعالیت ضد باکتریایی نمونه‌های کفیر تهیه شده با شیر گاو و شیر بادام می باشد. دانه‌های کفیر فعال‌شده به شیر گاو (پرچرب و کم چرب) و شیر بادام (با و بدون ساکارز) اضافه شد و فرآیند تخمیر در دمای 25 و 37 درجه سانتیگراد انجام شد. دانه‌ها از عصاره کفیر جدا شدند و فعالیت ضدباکتریایی عصاره کفیر در برابر 8 باکتری با روش چاهک مورد بررسی قرار گرفت. دمای تخمیر بر فعالیت ضدباکتریایی نمونه‌های کفیر تهیه‌شده با شیر گاو در تمام باکتری‌های مورد آزمایش به جز انتروکوکوس فکالیس تأثیر معنی‌داری داشت (P <0.05) و نمونه‌های کفیر تهیه‌شده در دمای 37 درجه سانتیگراد نسبت به 25 درجه سانتیگراد فعالیت ضد باکتریایی بیشتری نشان دادند. نوع شیر گاو (پرچرب و کم چرب) به استثنای استافیلوکوکوس اورئوس، سالمونلا تیفی‌موریوم و باسیلوس سرئوس بر فعالیت ضدباکتریایی در برابر باکتری‌های مورد آزمایش اثر معنی‌داری نشان نداد. انتروکوکوس فکالیس و سالمونلا تیفی موریوم به ترتیب حساس‌ترین و مقاوم‌ترین باکتری‌ها به نمونه‌های کفیر تهیه شده با شیر گاو بودند. علیرغم عدم تأثیر دمای تخمیر بر فعالیت ضدباکتریایی نمونه‌های کفیر تهیه‌شده با شیر بادام، وجود ساکارز تأثیر قابل‌توجهی بر فعالیت ضدباکتریایی علیه انتروکوکوس فکالیس، شیگلا دیسانتری، باسیلوس سرئوس و سودوموناس آئروژینوزا نشان داد  (P <0.05)، که نشان‌دهنده تأثیر مثبت حضور ساکارز بر فعالیت ضدباکتریایی است. به طور کلی تخمیر در دمای 37 درجه سانتی‌گراد برای دستیابی به بالاترین فعالیت ضدباکتریایی نمونه‌های کفیر تهیه شده با شیر گاو و همچنین افزودن ساکارز به شیر بادام برای دستیابی به بالاترین فعالیت ضدباکتریایی در برابر انتروکوکوس فکالیس، شیگلا دیسانتری، باسیلوس سرئوس و سودوموناس آئروژینوزا توصیه می‌شود.

 
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Antibacterial activity of cowʼs milk and almond milk fermented by kefir grains

نویسندگان English

Zahra Rezaei 1
Hadi Koohsari 2
Maryam Sadegh Shesh Poli 3
1 Graduated MSc, Department of Microbiology, Minudasht branch, Islamic Azad University, Minudasht, Iran
2 Associate Professor Department of Microbiology, Azadshahr Branch, Islamic Azad University, Azadshahr, Golestan, Iran
3 Graduated Ph. D of Molecular Medicine, Gorgan branch, Islamic Azad University, Gorgan, Iran
چکیده English

Kefir beverage is a complex probiotic, from a microbial symbiotic complex that is obtained mainly from cow's milk fermentation by kefir grains. Some people do not consume cow's milk. Plant-based milk can be alternative for animal milk. The purpose of this study is to investigate the antibacterial activity of kefir samples prepared with cow's milk and almond milk. Activated kefir grains were added to cow's milk (full-fat and low-fat) and almond milk (with and without sucrose) and the fermentation process was performed at 25 and 37°C. Grains were separated from kefir extract, and the antibacterial activity of kefir extract against 8 bacteria was evaluated by the well method. Fermentation temperature had a significant effect on the antibacterial activity of kefir samples prepared with cow's milk in all tested bacteria except for E. faecalis (P<0.05) and kefir samples prepared at 37°C compared to 25°C showed more antibacterial activity. The type of cow's milk (full-fat and low-fat) did not show a significant effect on the antibacterial activity against the tested bacteria, except for S. aureus, S. typhimurium, and B. cereus. E. faecalis and S. typhimurium were the most sensitive and resistant bacteria, respectively, to kefir samples prepared with cow's milk. Despite the lack of effect of fermentation temperature on the antibacterial activity of kefir samples prepared with almond milk, the presence of sucrose showed a significant effect on the antibacterial activity against E. faecalis, S. dysenteriae, B. cereus and P. aeruginosa (P<0.05), which indicates the positive effect of the presence of sucrose on the antibacterial activity. In general, fermentation at temperature of 37°C is recommended to achieve the highest antibacterial activity of kefir samples prepared with cow's milk, as well as adding sucrose to almond milk to achieve the highest antibacterial activity against E. faecalis, S. dysenteriae, B. cereus and P. aeruginosa.

 

کلیدواژه‌ها English

Almond milk
Antibacterial activity
Cow's milk
Kefir
[1]Shori, A. B., & Al Zahrani, A. J. (2021). Non-dairy plant-based milk products as alternatives to conventional dairy products for delivering probiotics. Food Science and Technology42, e101321. https://doi.org/10.1590/fst.101321.
[2]  Mäkinen, O. E., Wanhalinna, V., Zannini, E., & Arendt, E. K. (2016). Foods for special dietary needs: Non-dairy plant-based milk substitutes and fermented dairy-type products. Critical reviews in food science and nutrition56(3), 339-349. http://doi.org/10.1080/10408398.2012.761950.
[3]  Bernat, N., Cháfer, M., Chiralt, A., & González-Martínez, C. (2014). Vegetable milk and its fermented derivative products. International Journal of Food Studies3(1). https://doi.org/10.7455/ijfs/3.1.2014.a9.
[4] Romulo, A. (2022, February). Nutritional contents and processing of plant-based milk: a review. In IOP Conference Series: Earth and Environmental Science (Vol. 998, No. 1, p. 012054). IOP Publishing. https://doi.org/10.1088/1755-1315/998/1/012054.
[5]  Fuller, R. (1989). Probiotics in man and animals. The Journal of Applied Bacteriology66(5), 365-378.
[6]Jeske, S., Zannini, E., & Arendt, E. K. (2018). Past, present, and future: The strength of plant-based dairy substitutes based on gluten-free raw materials. Food Research International110, 42-51. https://doi.org/10.1016/j.foodres.2017.03.045.
[7]  Rasika, D. M., Vidanarachchi, J. K., Rocha, R. S., Balthazar, C. F., Cruz, A. G., Sant’Ana, A. S., & Ranadheera, C. S. (2021). Plant-based milk substitutes as emerging probiotic carriers. Current Opinion in Food Science38, 8-20. https://doi.org/10.1016/j.cofs.2020.10.025.
[8]Sajjadi, S. S., Koohsari, H., & Sadegh Shesh Poli, M. (2024). Antibacterial activity of soy milk fermented by kefir grain against several pathogenic bacteria. Food Research Journal34(2), 61-80. https://doi.org/10.22034/FR.2023.57991.1894.
[9]  Tangyu, M., Muller, J., Bolten, C. J., & Wittmann, C. (2019). Fermentation of plant-based milk alternatives for improved flavor and nutritional value. Applied microbiology and biotechnology103, 9263-9275. https://doi.org/10.1007/s00253-019-10175-9.
[10] Shori, A. B., Aboulfazli, F., & Baba, A. S. (2018). Viability of probiotics in dairy products: a review focusing on yogurt, ice cream, and cheese. Advances in biotechnology3, 1-25. https://doi.org/10.5851/kosfa.2023.e83.
[11]  Shori, A. B., Aboulfazli, F., & Baba, A. S. (2018). Viability of probiotics in dairy products: a review focusing on yogurt, ice cream, and cheese. Advances in biotechnology3, 1-25. https://doi.org/10.5851/kosfa.2023.e83.
[12]   Rezaei, R., & Koohsari, H. (2020). Using several fruit and vegetable juices as substrates for producing non-dairy probiotic beverages. https://doi.org/10.22067/ifstrj.v16i6.84472.
[13]   Farnworth, E. R. (2006). Kefir–a complex probiotic. Food Science and Technology Bulletin: Fu2(1), 1-17. https://doi.org/10.1616/1476-2137.13938.
[14]  Azizi, N. F., Kumar, M. R., Yeap, S. K., Abdullah, J. O., Khalid, M., Omar, A. R., ... & Alitheen, N. B. (2021). Kefir and its biological activities. Foods10(6), 1210. https://doi.org/10.3390/foods10061210.
[15] Rosa, D. D., Dias, M. M., Grześkowiak, Ł. M., Reis, S. A., Conceição, L. L., & Maria do Carmo, G. P. (2017). Milk kefir: nutritional, microbiological, and health benefits. Nutrition research reviews30(1), 82-96. https://doi.org/10.1017/S0954422416000275.
[16] Rattray, F.P., O’Connell, M.J., 2011. Fermented Milks Kefir. In: Fukay, J. W. (ed.), Encyclopedia of Dairy Sciences (2nd ed). Academic Press, San Diego, USA, p.518-524.
[17] Simova, E., Beshkova, D., Angelov, A., Hristozova, T. S., Frengova, G., & Spasov, Z. (2002). Lactic acid bacteria and yeasts in kefir grains and kefir made from them. Journal of Industrial Microbiology and Biotechnology28(1), 1-6. https://doi.org/10.1038/sj/jim/7000186.
[18]Ajam, F., & Koohsari, H. (2020). Effect of some fermentation conditions on antibacterial activity of fermented milk by kefir grains. Journal of Food Processing and Preservation44(12), e14913. https://doi.org/10.1111/jfpp.14913.
[19] Bernat, N., Cháfer, M., Chiralt, A., & González-Martínez, C. (2015a). Development of a non-dairy probiotic fermented product based on almond milk and inulin. Food Science and Technology International21(6), 440-453. https://doi.org/10.1177/1082013214543705.
[20] Wansutha, S., Yuenyaow, L., Jantama, K., & Jantama, S. S. (2018). Antioxidant activities of almond milk fermented with lactic acid bacteria. TJPS42(2018).
[21] Kundu, P., Dhankhar, J., & Sharma, A. (2018). Development of nondairy milk alternatives using soymilk and almond milk. Current Research in Nutrition and Food Science Journal6(1), 203-210. http://doi.org/10.12944/CRNFSJ.6.1.23.
[22]   Shafie, S. R., Hew, J. X., & Sulaiman, N. (2023). Proximate Composition and Antimicrobial Activity of Kefir Produced from Cow’s and Almond Milk: Proximate composition and antimicrobial activity of kefir mixtures. Journal of Tropical Life Science13(2), 287-296. https://doi.org/10.11594/jtls.13.02.06.
[23]  Weinstein MP, Patel JB, Burnham CA, Campeau S, Conville PS, Doern C, … Zimmer BL. (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. In Clinical and laboratory standard institute (Vol. M07, 11th ed., pp. 15–35). Pennsylvania, USA. Wayne.
[24]   Meilgaard, M.C., Civille, G.V., and Carr, B.T. 1991. Sensory evaluation techniques. 2nd edition. Crc prees, inc. bocaration, florida. Pp: 345-386.
[25] Chifiriuc, M. C., Cioaca, A. B., & Lazar, V. (2011). In vitro assay of the antimicrobial activity of kephir against bacterial and fungal strains. Anaerobe17(6), 433-435. https://doi.org/10.1016/j.anaerobe.2011.04.020.
[26] Garrote, G. L., Abraham, A. G., & De Antoni, G. L. (1997). Preservation of kefir grains, a comparative study. LWT-food science and technology30(1), 77-84. https://doi.org/10.1006/fstl.1996.0135.
[27]   Santos, A., San Mauro, M., Sanchez, A., Torres, J. M., & Marquina, D. (2003). The antimicrobial properties of different strains of Lactobacillus spp. Isolated from kefir. Systematic and Applied Microbiology26(3), 434-437. https://doi.org/10.1078/072320203322497464.
[28]   Silva, K. R., Rodrigues, S. A., Filho, L. X., & Lima, Á. S. (2009). Antimicrobial activity of broth fermented with kefir grains. Applied biochemistry and biotechnology152, 316-325. https://doi.org/10.1007/s12010-008-8303-3.
[29]  Wang, Y., Ahmed, Z., Feng, W., Li, C., & Song, S. (2008). Physicochemical properties of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir. International Journal of Biological Macromolecules43(3), 283-288. https://doi.org/10.1016/j.ijbiomac.2008.06.011.
[30]  Prado, M. R., Blandón, L. M., Vandenberghe, L. P., Rodrigues, C., Castro, G. R., Thomaz-Soccol, V., & Soccol, C. R. (2015). Milk kefir: composition, microbial cultures, biological activities, and related products. Frontiers in microbiology6, 1177. http://doi.org/doi: 10.3389/fmicb.2015.01177.
[31]  Sezer, Ç., & Güven, A. (2009). Investigation of the bacteriocin production capability of lactic acid bacteria isolated from foods. Kafkas Universitesi Veteriner Fakultesi Dergisi, 15, 45-50.
[32]  Ajam, F., & Koohsari, H. (2021). The Effect of Some Fermentation Conditions on the Production of Kefiran by Kefir Grains in Fermented Milk. Research and Innovation in Food Science and Technology9(4), 399-410. https://doi.org/10.22101/JRIFST.2021.259857.1205.
[33] Frengova, G. I., Simova, E. D., Beshkova, D. M., & Simov, Z. I. (2002). Exopolysaccharides produced by lactic acid bacteria of kefir grains. Zeitschrift für Naturforschung C57(9-10), 805-810. https://doi.org/10.1515/znc-2002-9-1009.
[34] Zajšek, K., & Goršek, A. (2011). Experimental assessment of the impact of cultivation conditions on kefiran production by the mixed microflora embedded in kefir grains. Chemical Engineering Transactions24(April), 481-486. https://doi.org/10.3303/CET1124081.
[35]     Bylund, G., 1995. Dairy Processing Handbook. Tetra Pak Processing Systems AB, S-221 86 Lund.
[36] Anderson, J. W., & Gilliland, S. E. (1999). Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. Journal of the American College of Nutrition18(1), 43-50. https://doi.org/10.1080/07315724.1999.10718826.
[37]   Pintado, M. E., Da Silva, J. L., Fernandes, P. B., Malcata, F. X., & Hogg, T. A. (1996). Microbiological and rheological studies on Portuguese kefir grains. International journal of food science & technology31(1), 15-26. http://doi.org/10.1111/j.1365-2621.1996.16-316.x.
[38]Altay, F., Karbancıoglu-Güler, F., Daskaya-Dikmen, C., & Heperkan, D. (2013). A review on traditional Turkish fermented non-alcoholic beverages: Microbiota, fermentation process and quality characteristics. International journal of food microbiology167(1), 44-56. https://doi.org/10.1016/j.ijfoodmicro.2013.06.016.
[39]  Gao, J., Gu, F., Abdella, N. H., Ruan, H., & He, G. (2012). Investigation on culturable microflora in Tibetan kefir grains from different areas of China. Journal of Food Science77(8), M425-M433. https://doi.org/10.1111/j.1750-3841.2012.02805.x
[40]Kabak, B., & Dobson, A. D. (2011). An introduction to the traditional fermented foods and beverages of Turkey. Critical reviews in food science and nutrition51(3), 248-260. https://doi.org/10.1080/10408390903569640.
[41] Kukhtyn, M., Vichko, O., Horyuk, Y., Shved, O., & Novikov, V. (2018). Some probiotic characteristics of a fermented milk product are based on the microbiota of “Tibetan kefir grains” cultivated in Ukrainian households. Journal of food science and technology55, 252-257. http://doi.org/10.1007/s13197-017-2931-y
[42]  Azizkhani, M., Saris, P. E. J., & Baniasadi, M. (2021). An in-vitro assessment of antifungal and antibacterial activity of cow, camel, ewe, and goat milk kefir and probiotic yogurt. Journal of Food Measurement and Characterization15, 406-415. https://doi.org/10.1007/s11694-020-00645-4.
[43] Üstün‐Aytekin, Ö., Şeker, A., & Arısoy, S. (2020). The effect of in vitro gastrointestinal simulation on bioactivities of kefir. International Journal of Food Science & Technology55(1), 283-292. https://doi.org/10.1111/ijfs.14274.
[44]    Shen, Y. (2018). Nutritional effects and antimicrobial activity of kefir (Grains). Journal of Dairy Science and Biotechnology36(1), 1-13. https://doi.org/10.22424/jmsb.2018.36.1.1.
[45]  Kim, D. H., Jeong, D., Kim, H., Kang, I. B., Chon, J. W., Song, K. Y., & Seo, K. H. (2016). Antimicrobial activity of kefir against various food pathogens and spoilage bacteria. Korean journal for food science of animal resources36(6), 787. http://doi.org/10.5851/kosfa.2016.36.6.787.
[46]  Bilac, C. A., Rodrigues, L. F. S., de Araújo, M. O., Gomes, K. O., de Souza Silva, C. M., da Silva, I. C. R., & Orsi, D. C. (2023). Physicochemical characterization and antibacterial activity of Brazilian artisanal milk kefir. Scientia Plena, 19(9), 1-9. http://doi.org/10.14808/sci.plena.2023.091501
[47]   La Torre, C., Caputo, P., Cione, E., & Fazio, A. (2024). Comparing nutritional values and Bioactivity of Kefir from different types of animal milk. Molecules29(11), 2710. http://doi.org/10.3390/molecules29112710.
[48]  Czamanski, R. T., Greco, D. P., & Wiest, J. M. (2004). Evaluation of antibacterial activity in filtrates of traditional kefir. Higiene Alimentar, 18, 75-77.
[49] Ulusoy, B. H., Çolak, H., Hampikyan, H., & Erkan, M. E. (2007). An in vitro study on the antibacterial effect of kefir against some food-borne pathogens. Türk Mikrobiyoloji Cemiyeti Dergisi37(2), 103-107.
[50]   Gamba, R. R., Yamamoto, S., Abdel-Hamid, M., Sasaki, T., Michihata, T., Koyanagi, T., & Enomoto, T. (2020). Chemical, microbiological, and functional characterization of kefir produced from cow’s milk and soy milk. International Journal of Microbiology2020(1), 7019286. https://doi.org/10.1155/2020/7019286.
[51]    Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor perspectives in biology2(5), a000414. https://doi.org/10.1101/cshperspect.a000414.
[52]   Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology13(1), 42-51. https://doi.org/10.1038/nrmicro3380.
[53]  Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and molecular biology reviews67(4), 593-656. http://doi.org/10.1128/MMBR.67.4.593-656.2003.
[54]  González-Orozco, B. D., García-Cano, I., Jiménez-Flores, R., & Alvárez, V. B. (2022). Invited review: Milk kefir microbiota—Direct and indirect antimicrobial effects. Journal of Dairy Science105(5), 3703-3715. https://doi.org/10.3168/jds.2021-21382.
[55] Vanga, S. K., & Raghavan, V. (2018). How well do plant-based alternatives fare nutritionally compared to cow’s milk? Journal of food science and technology55(1), 10-20. https://doi.org/10.1007/s13197-017-2915-y.
[56] Bernat, N., Cháfer, M., Chiralt, A., & González-Martínez, C. (2015b). Probiotic fermented almond “milk” as an alternative to cow milk yoghurt. International Journal of Food Studies4(2). https://doi.org/10.7455/ijfs/4.2.2015.a8.
[57]             Jaeger, S. R., & Giacalone, D. (2021). Barriers to consumption of plant-based beverages: A comparison of product users and non-users on emotional, conceptual, situational, conative and psychographic variables. Food Research International144, 110363. https://doi.org/10.1016/j.foodres.2021.110363
[58]  Silva, C.F.G.D., Santos, F.L., Santana, L.R.R.D., Silva, M.V.L. & Conceicao, T. D. A. (2018). Development and characterization of a soymilk Kefir-based functional beverage. Food Science and Technology38(3), 543-550. https://doi.org/10.1590/1678-457x.10617.
[59]  Viana, J. V., Da Cruz, A. G., Zoellner, S. S., Silva, R., & Batista, A. L. (2008). Probiotic foods: consumer perception and attitudes. International journal of food science & technology43(9), 1577-1580. https://doi.org/0.1111/j.1365-2621.2007.01596.x
[60]  Kempka, A. P., Krüger, R. L., Valduga, E., Di Luccio, M., Treichel, H., Cansian, R., & Oliveira, D. D. (2008). Formulation of a peach-flavored dairy drink using alternative substrates and probiotic culture. Food Science and Technology28, 170-177. http://doi.org/10.1590/S0101-20612008000500027.
[61]   Stroehle, L., Zweytick, G., & Berghofer, E. (2006). Sauerkraut fermentation with L (+)-lactic acid-producing bacteria. Ernaehrung 30(1): 293-303.
[62]  Rackis, J. J., Sessa, D. J., & Honig, D. H. (1979). Flavor problems of vegetable food proteins. Journal of the American Oil Chemists' Society56(3Part2), 262-271. https://doi.org/10.1007/BF02671470.
[63]   Blagden, T. D., & Gilliland, S. E. (2005). Reduction of levels of volatile components associated with the “beany” flavor in soymilk by lactobacilli and streptococci. Journal of Food Science70(3), M186-M189. https://doi.org/10.1111/j.1365-2621.2005.tb07148.x
[64]    Pontonio, E., & Rizzello, C. G. (2021). Milk alternatives and non-dairy fermented products: Trends and challenges. Foods10(2), 222. http://doi.org/10.3390/foods10020222.
[65]  Alcorta, A., Porta, A., Tárrega, A., Alvarez, M. D., & Vaquero, M. P. (2021). Foods for plant-based diets: Challenges and innovations. Foods10(2), 293. https://doi.org/10.3390/foods10020293.
[66] Aydar, E. F., Tutuncu, S., & Ozcelik, B. (2020). Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. Journal of Functional Foods70, 103975. https://doi.org/10.1016/j.jff.2020.103975.