مطالعه تاثیر پروتئین هیدرولیز شده دانه خربزه ترکمنی بر برخی ویژگی های فیلم نانوکامپوزیت پلی‌اتیلن/ نانورس

نویسندگان
1 دانشگاه آزاد واحد آیت ا...آملی
2 گروه علوم و صنایع غذایی، واحد آیت ا... آملی، دانشگاه آزاد اسلامی،آمل، ایران
چکیده
امروزه، به دلیل نگرانی‌های فزاینده درباره‌ی تأثیرات منفی مواد بسته‌بندی غیرقابل تجزیه، استفاده از مواد بسته‌بندی تجزیه‌پذیر به طور فزاینده‌ای مورد توجه قرار گرفته است. . هدف از این پژوهش به بررسی اثر پروتئین هیدرولیز شده دانه خربزه ترکمنی با استفاده از آنزیم پروتامکس (0/5 و 1 درصد وزنی/ حجمی%) بر خواص مکانیکی، فیزیکی، آنتی‌اکسیدانی و ضد میکروبی فیلم نانوکامپوزیت بر پایه پلی‌اتیلن و نانورس می باشد. نتایج نشان می‌دهد که پروتئین هیدرولیز شده دارای میزان پروتئین بالا و درجه هیدرولیز قابل توجهی است. این پروتئین غنی از اسیدهای آمینه هیدروفوب (35/26%) و اسیدهای آمینه آروماتیک (19/67%) می‌باشد. افزودن نانو رس به فیلم پلی‌اتیلن منجر به کاهش رطوبت و WVP و افزایش ضخامت و کدورت گردید. با این حال، افزودن پروتئین هیدرولیز شده باعث افزایش ضخامت، رطوبت و WVP فیلم‌ها و کاهش کدورت شد (0/05>P). همچنین، مشاهده گردید با افزودن پروتئین هیدرولیز شده، مقاومت کششی فیلم‌ها کاهش یافته و ازدیاد طول نمونه‌ها به‌طور معناداری افزایش یافته است (0/05>P). پروتئین هیدرولیز شده دانه خربزه فعالیت قابل توجهی در مهار رادیکال‌های آزاد DPPH نشان داد، و افزایش غلظت آن تأثیر مثبتی بر این خصوصیت داشت (0/05>P). این فیلم‌ها همچنین خاصیت ضد میکروبی قوی‌در برابر باکتری‌های پاتوژن داشتند، اثر آن‌ها بر باکتری گرم مثبت استافیلوکوکوس اورئوس بیشتر از باکتری گرم منفی اشریشیا کلی بود. فیلم نانوکامپوزیت حاوی 1% پروتئین هیدرولیز شده بیشترین فعالیت آنتی‌اکسیدانی و ضد میکروبی را نشان داد (0/05>P). به‌طور کلی، استفاده از پروتئین هیدرولیز شده دانه خربزه در تهیه فیلم نانوکامپوزیت می‌تواند به تولید فیلم‌های مناسب برای بسته‌بندی مواد غذایی منجر شود. این فیلم‌ها ویژگی‌های فیزیکی و مکانیکی مطلوبی دارند و دارای خواص آنتی‌اکسیدانی و ضد میکروبی مطلوبی نیز می‌باشند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Study of the Effect of Hydrolyzed Protein from Turkmen Melon Seeds on Some Properties of Polyethylene/Nanoclay Nanocomposite Films

نویسندگان English

gelareh izadi amoli 1
peiman ariaii 2
Mahro Esmaeili 2
Roya Bagheri 2
1 Ayatollah Amoli Branch, Islamic Azad University
2 Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
چکیده English

Due to increasing concerns regarding the negative impacts of non-biodegradable packaging materials, the use of biodegradable packaging solutions is gaining significant attention. This study aims to evaluate the effects of hydrolyzed protein from Turkmen melon seeds utilizing the enzyme Protamax at concentrations of 0.5% and 1% (w/v) on the mechanical properties as well as the physicochemical, antioxidant, and antimicrobial characteristics of polyethylene/nanoclay-based nanocomposite films. The results demonstrate that the hydrolyzed protein has a high protein content and a notable degree of hydrolysis. Furthermore, this protein is rich in hydrophobic amino acids (35.26%) and aromatic amino acids (19.67%). The incorporation of nanoclay into polyethylene films resulted in reduced moisture content and water vapor permeability (WVP), along with increased thickness and opacity. In contrast, the addition of hydrolyzed protein led to increases in the thickness, moisture, and WVP of the films while decreasing opacity (p < 0.05). It was also observed that the tensile strength of the films decreased, while the elongation at break significantly increased with the addition of hydrolyzed protein. The hydrolyzed protein from melon seeds exhibited considerable DPPH free radical scavenging activity, with higher concentrations positively influencing this property (p < 0.05). Additionally, these films displayed stronger antimicrobial properties against pathogenic bacteria, notably showing greater efficacy against the gram-positive bacterium Staphylococcus aureus compared to the gram-negative bacterium Escherichia coli. The nanocomposite film containing 1% hydrolyzed protein demonstrated the highest antioxidant and antimicrobial activity (p < 0.05). Overall, the use of hydrolyzed protein from melon seeds in the preparation of nanocomposite films can lead to the development of suitable packaging materials for food applications. These films exhibit desirable physicochemical and mechanical properties, alongside effective antioxidant and antimicrobial characteristics.

کلیدواژه‌ها English

Pathogenic bacteria
Bioactive peptides
Mechanical properties
Edible films
enzymatic hydrolysis
[1] Hamzeh-Kalkenari, S., Bodaghi, H. & Ghasimi Hagh, Z. (2021). Improving postharvest quality of button mushroom (Agaricus bisporus) using polyethylene-clay nanocomposite packing and Echinophora cinerea essential oil coating. Iranian Food Science and Technology Research Journal, 17(2): 315-328.
[2] Abdollahi, M., Rezaei, M. &Farzi, G. (2012). Improvement of active chitosan film properties with rosemary essential oil for food packaging. International Journal of Food Science and Technology, 47: 847–853.
[3] Nemati, M., Shahosseini, S. R., & Ariaii, P. (2024). Review of fish protein hydrolysates: production methods, antioxidant and antimicrobial activity and nanoencapsulation. Food Science and Biotechnology, 33, 1789–1803.
[4] Ovissipour, M., Rasco, B., Shiroodi, S. G., Modanlow, M., Gholami, S., & Nemati, M. (2013). Antioxidant activity of protein hydrolysates from whole anchovy sprat (Clupeonella engrauliformis) prepared using endogenous enzymes and commercial proteases. Journal of the Science of Food and Agriculture, 93, 1718-1726.
[5] Shahosseini, S. R., Javadian, S. R., & Safari, R. (2022). Effects of molecular weights-assisted enzymatic hydrolysis on antioxidant and anticancer activities of Liza abu muscle protein hydrolysates. International Journal for Peptide Research & Therapeutics, 28, 72.
[6] Nemati, M., Javadian, S. R., Ovissipour, M., & Keshavarz, M. (2012). A study on the properties of alosa (Alosa caspia) by-products protein hydrolysates using commercial enzymes. World Applied Sciences Journal, 18(7), 950-956.
[7] Nemati, M., Javadian, S. R., & Keshavarz, M. (2019). Production of protein hydrolysates from Caspian shad (Alosa caspia) by-products using Alcalase enzyme. Journal of Marine Biology, 11(43), 87-95.
[8] Alvand, M., sadeghi mahoonak, A., ghorbani, M., shahiri tabarestani, H., & kaveh, S. (2022). Comparison of the Antioxidant Properties of Hydrolyzed Turkmen Melon Seed Protein by Pancreatin and Alcalase. Food Engineering Research, 21(2): 75-90.
[9] Zeb, A. (2016). Phenolic profile and antioxidant activity of Melon (Cucumis melo L.) seeds from Pakistan. Foods. 5: 67–74.
[10] Shahidi, F., Kochaki, A., & Baghaii, H. (2006). Investigation of some chemical compounds and physical properties of watermelon, squash, cantaloupe and melon seeds native to Iran and determination of chemical properties of their oil. Journal of Agricultral Science and Technology. 20(5): 421-411.
[11] Feyzi, S., Varidi, M., Zareb, F. & Varidi, M.J. (2015). Extraction Optimization of Fenugreek Seed Protein. Science of Food and Agriculture. 15: 3165–3176.
[12] AOAC. (2005). Official Method of Analgsis (17th ed). Washington, DC: Association of Official Analytical chemists.
[13] Mirzapour, Z., Ariaii, P., Safari, R., et al. (2022). Evaluation the effect hydrolyzed canola meal protein with composite coating on physicochemical and sensory properties of chicken nugget. International Journal of Peptide Research and Therapeutics, 28, 97.
[14] Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161-166.
[15] ASTM. (1996). Standard test methods for tensile properties of thin plastic sheeting, D882-91. Annual book of ASTM. Philadelphia, PA: American Society for Testing and Material.
[16] Siripatrawan, U., & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24(8), 770-775.
[17] Emiroğlu, Z. K., Yemiş, G. P., Coşkun, B. K., & Candoğan, K. (2010). Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Science, 86(2), 283-288.
[18] Liaset, B., Nortvedt, R., Lied, E., & Espe, M. (2002). Studies on the nitrogen recovery in enzymatic hydrolysis of Atlantic salmon (Salmo salar, L.) frames by Protamex™ protease. Process Biochemistry, 37(11), 1263-1269.
[19] Islam M, Huang Y, Islam S, Fan B, Tong L, & Wang F. (2022) Influence of the Degree of Hydrolysis on Functional Properties and Antioxidant Activity of Enzymatic Soybean Protein Hydrolysates. Molecules. 19;27(18):6110.
[20] López-García G, Dublan-García O, Arizmendi-Cotero D, & Gómez Oliván LM. (2022). Antioxidant and Antimicrobial Peptides Derived from Food Proteins. Molecules. 16;27(4):1343.
[21] Mallek-Ayadi S, Bahloul N, & Kechaou N.(2019). Phytochemical profile, nutraceutical potential and functional properties of Cucumis melo L. seeds. J Sci Food Agric. 99:1294-1301.
[22] Food and Agriculture Organization of the United Nations;World Health Organization; United Nations University. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint FAO/WHO/UNU Expert Consultation; FAO: Rome, Italyd; WHO: Geneva, Switzerland, 2007.
[23] Gao , Y. Wang , Y. Yan and Z. & Li , J. (2021). Ultrasonic-alkali method for synergistic breakdown of excess sludge for protein extraction, Cleaner Prod., 295, 126288.
[24] Jiang, Y. F., Li, Y. X., Chai, Z., & Leng, X. J. (2010). Study of the physical properties of whey protein isolate and gelatin composite films. J. Agric. Food Chem., 58, 5100-5108.
[25] Hosseini, A., & Moradinezhad, F. (2018). Effect of short-term high CO2 treatment on quality and shelf life of button mushroom (Agaricus bisporus) at refrigerated storage. Postharvest Biology a Technology, 1, 37-48.
[26] de Oliveira Filho, J.M., Rodrigues, J.M., Valadares, A.C.F., de Almeida, F.D.L., & Dyszy, F.H. (2019). Active food packaging: Alginate films with cottonseed protein hydrolysates. Food Hydrocolloids, 92, 267-275.
[27] Ghasemi, Z., Alizadeh Khaled-Abad, M., Almasi, H., & Nikoo, M. (2022). Carboxymethyl cellulose based bioactive edible films with Lactobacillus casei and fish protein hydrolysates. Iranian Food Science and Technology Research Journal, 17(6), 85-102.
[28] Rhim, J.W., Wang, L.F. & Hong, S.I. (2013). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids, 33(16): 327-335.
[29] Ojagh, S. M., Vejdan Taleshmikaeil, A., Abdollahi, M. (2018) Effect of nanoclay addition on the properties of agar/fish gelatin bilayer film containing TiO2 nanoparticles. Iranian Food Science and Technology Research Journal, 14(1): 27-38.
[30] Rhim, J. W., and Ng, P. K. 2014. Natural biopolymer-based nanocomposite films for packaging applications. Critical reviews in food science and nutrition, 47(4): 411-433.
[31] Kchaou, H., Jridi, M., Benbettaieb, N., Debeaufort, F., & Nasri, M. (2020). Bioactive films based on cuttlefish (Sepia officinalis) skin gelatin incorporated with cuttlefish protein hydrolysates: Physicochemical characterization and antioxidant properties. Food Packaging and Shelf Life, 24, 100477.
[32] Benbettaïeb N, Debeaufort F, & Karbowiak T. (2019). Bioactive edible films for food applications: mechanisms of antimicrobial and antioxidant activity. Crit Rev Food Sci Nutr. 59(21):3431-3455.
[33] Ghanbarinia, S. H., Ariaii, P., Safari, R., & Najafian, L. (2022). The effect of hydrolyzed sesame meal protein on the quality and shelf life of hamburgers during refrigerated storage. Animal Science Journal, 93(1), e13729.
[34] Mirsadeghi Darabi, D., Ariaii, P., Safari, R., & Ahmadi, M. (2022). Effect of clover sprouts protein hydrolysates as an egg substitute on physicochemical and sensory properties of mayonnaise. Food Science & Nutrition, 10, 253–263.
[35] Pirveisi, N., Ariaii, P., Esmaeili, M., Lotfi, L., Kaboosi, H., & Afshar Sedigh, R. (2023). Investigating active packaging based on cellulose nanofibers oxidized by TEMPO method containing hydrolyzed protein obtained from pine tree fruit on the quality of pacific white shrimp (Litopenaeus vannamei) during the storage period. Food Measurement, 17, 3323-3337.
[36] Tkaczewska, J. (2020). Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings - A review. Trends in Food Science & Technology, 106, 298-311.
[37] Ghafari, E., Ariaii, P., & Bagheri, R. (2024). Investigating the effect of nanochitosan-Iranian tragacanth gum composite film along with Eryngium campestre essential oil on the shelf life of goat meat. Food Measurement, 18, 1543-1558.