مروری بر بکارگیری پلی‌فنول‌ها در بسته‌بندی فعال تخم‌مرغ با هدف افزایش ماندگاری

نویسنده
گروه کشاورزی، واحد سوادکوه، دانشگاه آزاد اسلامی، سوادکوه، ایران
چکیده
تخم­مرغ یکی از بهترین منابع طبیعی پروتئین با کیفیت بالا و سایر مواد مغذی بوده و در عین حال مستعد فساد است. نگرانی مصرف­کنندگان از آلودگی و انتقال بیماری­زاها به­ویژه سالمونلا، موجب شد تا تمایل به استفاده از تخم­مرغ­های ایمن و بسته­بندی­ شده افزایش یابد. مشکلات زیست­محیطی پلیمرهای مصنوعی به­عنوان مواد بسته­بندی به معضلی جهانی تبدیل شده است، به­همین دلیل جایگزینی آنها با پلیمرهای زیست تخریب­پذیر توسعه یافته است. برای غلبه بر برخی از ضعف­های فیزیکی و مکانیکی و افزایش عملکرد زیست­پلیمرها، آنها را با یکدیگر ترکیب نموده (کامپوزیت) و/یا عوامل تقویت­کننده و عوامل طبیعی در ساخت آنها بکار می­رو­د. اسانس و عصاره­های گیاهی مختلف به­طور گسترده­ای در مواد بسته­بندی فعال مورد استفاده قرار می­گیرد. نتایج مطالعه­های انجام شده نشان داد خواص سدی و عملکردی زیست­پلیمر­های فعال به­دلیل ماهیت آب­گریزی، خواص ضد اکسیدانی و ضد میکروبی پلی­فنول­های موجود در اسانس­ و عصاره بهبود می­یابد. بسته­بندی تخم­مرغ با این زیست­پلیمر­های فعال موجب حفظ کیفیت داخلی طی دوره نگهداری و در نهایت افزایش ماندگاری آن می­شود. در این مقاله سعی شده است بکارگیری ترکیبات شیمایی گیاهی در زیست­پلیمرهای فعال بسته­بندی تخم­مرغ بر پایه پلی­ساکارید، پروتئین و پلی­استر آلیفاتیک مرور شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The use of polyphenols in egg active packaging to extend its shelf life, a review

نویسنده English

dariush khademi shurmasti
Department of Agriculture, Savadkooh Branch, Islamic Azad University, Savadkooh, Iran
چکیده English

Eggs are one of the superior value natural sources of protein and other nutrients, at the same time, they are vastly perishable. Consumers' concern about egg contamination and transmission of pathogens, especially salmonella, increased the desire to use safe and packaged eggs. The environmental hazards of synthetic polymers as packaging materials have become a global problem, for this reason, their replacement with biodegradable ones has been developed. To overcome some physical and mechanical weaknesses as well as increase bio-polymers performance, they are combined (composite) and/or reinforcing agents and natural agents are used in their fabrication. A variety of plant essential oils and extracts are widely used in active packaging materials. The results of the studies showed that the barrier and functional properties of active biopolymers are improved due to their hydrophobic nature, as well as the antioxidant and antimicrobial properties of polyphenols content of essential oils and extracts. Egg packaging with these active biopolymers preserves internal quality during storage and ultimately extends its shelf life. In this article, an attempt has been made to review the use of plant chemical compounds (phytochemical) in active biopolymers for egg packaging based on polysaccharide, protein and aliphatic polyester

کلیدواژه‌ها English

packaging
Egg
Biopolymer
Bioactive
phytochemical
[1] Carvalho, C.L. Andretta, I., Galli, G.M., Camargo, N.d.O.T., Stefanello, T.B., Migliorini, M.J., Melchior, R. and Kipper, M. 2023. Effects of dietary β-mannanase supplementation on egg quality during storage. Poultry, 2: 111–122. DOI: 10.3390/poultry2010011
[2] Khademi Shurmasti, D. 2022. Functional eggs; enriched with minerals, vitamins and pigments. Quality and Durability of Agricultural and Food Products, 4(1): 12-28. DOI: 10.30495/qafj.2022.1956967.1028 [In Persian].
[3] Carvalho, C.L., Andretta, I., Galli, G.M., Stefanello, T.B., Camargo, N.d.O.T., Marchiori, M., Melchior, R. and Kipper, M. 2022. Effects of dietary probiotic supplementation on egg quality during storage. Poultry, 1: 180–192. DOI: 10.3390/poultry1030016
[4] Caner, C. and Yuceer, M. 2015. Efficacy of various protein-based coating on enhancing the shelf life of fresh eggs during storage. Poult. Sci. 94: 1665-1677.
[5] Gabriela da Silva, P. G., Daniela da Silva, P. D., Cardinal, K. M. and Bavaresco, C. 2020. The use of coatings in eggs: A systematic review. Trends Food Sci Technol., 106: 312-321, DOI: 10.1016/j.tifs.2020.10.019.
[6] Allende, A., Tom´as-Barberan, F. A. and Gil, M. 2006. Minimal processing for healthy traditional foods. Trends Food Sci Technol. 17: 513–519.
[7] Siddiqui, S. A. Khan, S., Mehdizadeh, M., Bahmid, N.A., Adli, D.N., Walker, T.R., Perestrelo, R. and Camara, J.S. 2023. Phytochemicals and bioactive constituents in food packaging – A systematic review. Heliyon, 9: e21196. DOI: 10.1016/j.heliyon.2023.e2119
[8] Matthews, C., Moran, F. and Jaiswal, A.K. 2021. A review on European :union:’s strategy for plastics in a circular economy and its impact on food safety. J. Clean. Prod., 283: 125263.
[9] Reichert, C.L., Bugnicourt, E., Coltelli, M.B., Cinelli, P., Lazzeri, A., Canesi, I., Braca, F., Martinez, B.M., Alonso, R., Agostinis, L. et al. 2020. Bio-based packaging: materials, modifications, industrial applications and sustainability. Polymers, 12: 1558.
[10] Groh, K.J., Backhaus, T., Carney-Almroth, B., Geueke, B., Inostroza, P.A., Lennquist, A., Leslie, H.A., Maffini, M., Slunge, D., Trasande, L. et al. 2019. Overview of known plastic packaging-associated chemicals and their hazards. Sci. Total Environ., 651: 3253–3268.
[11] Angellier-Coussy, H., Chalier, P., Gastaldi, E., Guillard, V., Guillaume, C., Gontard, N. and Peyron, S. 2013. Protein-based nanocomposites for food packaging. In: Dufresne, A., Thomas, S. and Pothan, L.A. (eds.), Biopolymer Nanocomposites: Processing, Properties, and Applications, pp: 613–654. Wiley, New York. DOI: 10.1002/9781118609958.ch25
[12] Cazón, P., Velazquez, G., Ramírez, J.A. and Vázquez, M. 2017. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocoll., 68: 136–148.
[13] Ebrahimpour Kasmani, J., Khademi Shurmasti, D. and Samarih, A. 2023. Application of biodegradable wrappers polysaccharide-based in egg packaging: A review. Scientific Journal of Packaging Science and Art, 14(3): 51-62 [In Persian].
[14] Salarbashi, D., Bazeli, J. and Tafaghodi, M. 2019. Environment-friendly green composites based on soluble soybean polysaccharide: A review. Int. J. Biol. Macromol., 122: 216–223.
[15] Jeya Jeevahan, J., Chandrasekaran, M., Venkatesan, S.P., Sriram, V., Britto Joseph, G., Mageshwaran, G. and Durairaj, R.B. 2020. Scaling up difficulties and commercial aspects of edible films for food packaging: A review. Trends Food Sci. Technol., 100, 210–222.
[16] Mardani Kiasari, M. and Khademi Shurmasti, D. 2020. Effect of lemon grass (Cymbopogon citratus) extract and nanoclay in nanocomposite coating on the physicochemical and microbial properties of chicken fillets during refrigerated storage. Journal of Food Science and Technology, 17(106): 13-21. DOI: 10.29252/fsct.17.09.02 [In Persian].
[17] Sharifi, A.A. and Khademi Shurmasti, D. 2022. Effect of carboxymethyl cellulose-based nanocomposite coating on internal quality and eggshell morphology during storage at ambient temperature. Quality and Durability of Agricultural and Food Products, 2(1): 1-13. DOI: 10.30495/qafj.2022.1952893.1025 [In Persian].
[18] Ahmadi, Z. and Khademi Shurmasti, D. 2020. Effects of Mentha spicata L. extract in carboxymethyl cellulose-oleic acid composite coating on the shelf life of fish fillets during cold storage. Iranian Journal of Medicinal and Aromatic Plants, 36(5): 724-733. DOI: 10.22092/ijmapr.2020.343042.2797 [In Persian].
[19] Ghorbani, M., Khademi Shurmasti, D. and Fahim Dezhban, F. 2023. Effect of active composite coating enriched with Echinacea Purpurea L. Moench extract on the shelf life of Oncorhynchuus Mykiss fillet during cold storage. Quality and Durability of Agricultural and Food Products, 3(1): 1-12. DOI: 10.30495/qafj.2023.1989150.1079 [In Persian].
[20] Valipor Kootenaei, F., Ariaii, P., Khademi Shurmasti, D. and Nemati, M. 2016. Effect of chitosan edible coating enriched with eucalyptus essential oil and α- tocopherol on silver carp fillets quality during refrigerated storage. J. Food Saf., DOI: 10.1111/jfs.12295.
[21] Hajighasem Sharbatdar, H. and Khademi Shurmasti, D. 2022. The effect of bio-filler-reinforced chitosan coating with types of solvent on internal changes and outer eggshell morphology. SVU- International Journal of Veterinary Sciences, 5(2): 45-54. DOI: 10.21608/svu.2022.129538.1184
[22] Sharbatdar, H.H. and Khademi Shurmasti, D. 2023. Effect of solvent types in chitosan-based nanocomposite coating on internal quality and eggshell morphology. Asia-Pacific Journal of Science and Technology, 28(4), APST–28. DOI: 10.14456/apst.2023.65
[23] Ghahramani, S., Hejazi, S. and Abdolkhani, A. 2024. Investigating the application of nano chitosan in the paper and food packaging industry. Scientific Journal of Packaging Science and Art, 15(1): 61-68 [In Persian].
[24] Riazi Kermani, P., Khademi Shurmasti, D. and Alizadeh Karsalar, A. 2023. Investigation of physical, mechanical and morphological properties of chitosan film prepared with different levels, molecular weights and solvents. Scientific Journal of Packaging Science and Art, 14(2): 9-19 [In Persian].
[25] Sharifi, A. and Khademi Shurmasti, D. 2023. Effect of chitosan molecular weight and type of plasticizer in edible coating on internal quality and eggshell morphology, Iranian Journal of Food Science and Technology, 20(136):137-149. DOI: 10.22034/FSCT.20.136.137 [In Persian].
[26] Sani, M.A., Azizi-Lalabadi, M., Tavassoli, M., Mohammadi, K. and McClements, D.J. 2021. Recent advances in the development of smart and active biodegradable packaging materials. Nanomaterials, 1 (11): 1331. DOI: 10.3390/nano11051331
[27] Baghi, F., Gharsallaoui, A., Dumas, E. and Ghnimi, S. 2022. Advancements in biodegradable active films for food packaging: effects of nano/microcapsule incorporation. Foods, 11, 760.
[28] Jafarzadeh, S., Jafari, S.M., Salehabadi, A., Nafchi, A.M., Uthaya Kumar, U.S. and Khalil, H.P.S.A. 2020. Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends Food Sci. Technol., 100: 262–277.
[29] Akbari, S. M. and Mehregan Nikoo, A. 2023. Active packaging containing scavenging compounds: a review. Scientific Journal of Packaging Science and Art, 14(2): 57-66 [In Persian].
[30] Perera, K.Y., Jaiswal, A.K. and Jaiswal, S. 2023. Biopolymer-based sustainable food packaging materials: challenges, solutions, and applications. Foods, 12: 2422. DOI: 10.3390/foods12122422
[31] Dey, A. and Neogi, S. 2019. Oxygen scavengers for food packaging applications: a review. Trends Food Sci. Technol., 90: 26–34.
[32] Varghese, S.A., Siengchin, S. and Parameswaranpillai, J. 2020. Essential oils as antimicrobial agents in biopolymer-based food packaging- a comprehensive review. Food Biosci., 38: 100785.
[33] Hoseinzade, D. and Mehregan Nikoo, A. 2024. Biodegradable films from bacterial cellulose: a Review. Scientific Journal of Packaging Science and Art, 15(1): 51-60 [In Persian].
[34] Arfaoui, L. 2021. Dietary plant polyphenols: effects of food processing on their content and bioavailability, Molecules, 26: 2959. DOI: 10.3390/molecules26102959
[35] Serra, V., Salvatori, G. and Pastorelli, G. 2021. Dietary polyphenol supplementation in food producing animals: effects on the quality of derived products. Animals, 11: 401. DOI: 10.3390/ani11020401
[36] Manso, T., Lores, M., de Miguel, T. 2022. Antimicrobial activity of polyphenols and natural polyphenolic extracts on clinical isolates. Antibiotics, 11: 46. DOI: 10.3390/antibiotics11010046
[37] Zhang, Y., Wang, B., Lu, F., Wang, L., Ding, Y. and Kang, X. 2021. Plant-derived antioxidants incorporated into active packaging intended for vegetables and fatty animal products: a review. Food Addit. Contam. 38: 1237. DOI: 10.1080/19440049.2021.188574
[38] Kumar, Y., Yadav, D.N., Ahmad, T. and Narsaiah, K. 2015. Recent trends in the use of natural antioxidants for meat and meat products. Compr. Rev. Food Sci. Food Saf. 14: 796. DOI: 10.1111/1541-4337.12156
[39] Siddiqui, S.A., Redha, A.A., Esmaeili, Y. and Mehdizadeh, M. 2022. Novel insights on extraction and encapsulation techniques of elderberry bioactive compounds. Crit. Rev. Food Sci. Nutr., 63(22): 5937-5952. DOI: 10.1080/10408398.2022.2026290.
[40] Bahrami Feridoni, S. and Khademi Shurmasti, D. 2020. Effect of the nanoencapsulated sour tea (Hibiscus sabdariffa L.) extract with carboxymethyl cellulose on quality and shelf life of chicken nugget. Food Sci. Nutr., 00: 1-12. DOI: 10.1002/fsn3.1656
[41] Ghenabzia, H. Hemmami, I.B. Amor, S. Zeghoud, B.B. Seghir, R. Hammoudi. 2023. Different methods of extraction of bioactive compounds and their effect on biological activity: a review. International Journal of Secondary Metabolite, 10 (4): 469-494 DOI: 10.21448/ijsm.1225936
[42] Huang, G., Chen, F., Yang, W. and Huang, H. 2021. Preparation, deproteinization and comparison of bioactive polysaccharides. Trends Food Sci. Technol., 109: 564–568.
[43] Khademi Shurmasti, D. 2022. Cellulose derivatives as edible film and coating; Characteristics and effect on the quality and shelf life of animal, poultry and aquatic products. Iranian Journal of Food Science and Technology, 18(121): 349-364. DOI: 10.52547/fsct.18.121.28 [In Persian].
[44] Ehsan, M. and Khademi Shurmasti, D. 2021. Effect of washing and active nanocomposite coating of carboxymethyl cellulose-nanoclay containing marjoram extract (Origanum vulgare L) on egg quality during storage at ambient temperature. Iranian Journal of Food Science and Technology, 18(118): 107-118. DOI: 10.52547/fsct.18.09.09 [In Persian].
[45] Ehsan, M. and Khademi Shurmasti, D. 2022. Effects of washing and nanocomposite active coating of carboxymethyl cellulose containing nanoclay and marjoram extract (Origanum vulgare L) on the internal quality and eggshell during cold storage. Iranian Journal of Nutrition Sciences & Food Technology, 16(4): 111-120. DOI: 20.1001.1.17357756.1400.16.4.7.6 [In Persian].
[46] Yousefi Zirabi, E. and Khademi Shurmasti, D. 2024. Monitoring the physicochemical changes of eggs coated with active nanocomposite incorporating garlic extract (Allium sativum L.) during storage. Journal of Food Science and Technology, 21(153): 1-11. DOI: 10.22034/FSCT.21.153.1 [In Persian].
[47] Oliveira, G.D.S., McManus, C., Pires, P.G.D.S. and dos Santos, V.M. 2022. Combination of cassava starch biopolymer and essential oils for coating table eggs. Front. Sustain. Food Syst., 6: 957229
[48] de Araújo, M.V., Oliveira, G.d.S., McManus, C., Vale, I.R.R., Salgado, C.B., Pires, P.G.d.S., de Campos, T.A., Gonçalves, L.F., Almeida, A.P.C., Martins, G.d.S. et al. 2023. Preserving the internal quality of quail eggs using a corn starch-based coating combined with basil essential oil. Processes, 11: 1612. DOI: 10.3390/pr11061612
[49] Eddin, S. and Tahergorabi, R. 2019. Efficacy of sweet potato starch-based coating to improve quality and safety of hen eggs during storage. Coatings, 9: 205. DOI: 10.3390/coatings9030205
[50] Nashi, H. Barzegar, M. Nouri, Sh. Jaldani. 2017. Investigating the effect of carboxymethyl cellulose coating containing nanoclay and peppermint essence on egg storage properties. Biosystem Engineering of Iran. 48(2): 229-239.
[51] Bhatia, S., Al-Harrasi, A., Jawad, M., Shah, Y.A., Al-Azri, M.S., Ullah, S., Oz, E., Oz, F., Koca, E. and Aydemir, L.Y. 2023. Development, characterization, and assessment of antioxidant pectin–sodium alginate based edible films incorporated with cassia essential oil. International of Food Science and Technology, 58(9): 4652-4665. DOI: 10.1111/ijfs.16569
[52] Bhatia, S., Al-Harrasi, A., Shah, Y.A., Altoubi, H.W.K., Kotta, S., Sharma, P., Anwer, M.K., Kaithavalappil, D.S., Koca, E. and Aydemir, L.Y. 2023. Fabrication, characterization, and antioxidant potential of sodium alginate/acacia gum hydrogel-based films loaded with cinnamon essential oil. Gels, 9: 337. DOI: 10.3390/gels9040337
[53] Didar, Z. 2019. Effects of coatings with pectin and Cinnamomum verum hydrosol included pectin on physical characteristics and shelf life of chicken eggs stored at 30°C. Nutrition and Food Sciences Research, 6(4): 39-45. DOI: 10.29252/nfsr.6.4.39
[54] Reichert, C.L., Bugnicourt, E., Coltelli, M.B., Cinelli, P., Lazzeri, A., Canesi, I., Braca, F., Martinez, B.M., Alonso, R., Agostinis, L. et al. 2020. Bio-based packaging: materials, modifications, industrial applications and sustainability. Polymers, 12: 1558.
[55] Vale, I.R.R., Oliveira, G.d.S., McManus, C., de Araújo, M.V., Salgado, C.B., Pires, P.G.d.S., de Campos, T.A., Gonçalves, L.F., Almeida, A.P.C., Martins, G.d.S. et al. 2023 Whey protein isolate and garlic essential oil as an antimicrobial coating to preserve the internal quality of quail eggs. Coatings, 13: 1369. DOI: 10.3390/coatings13081369
[56] Pires, P.G.S., Leuven, A.F.R., Franceschi, C.H., Machado, G.S., Pires, P.D.S., Moraes, P.O., Kindlein, L. and Andretta, I. 2020. Effects of rice protein coating enriched with essential oils on internal quality and shelf life of eggs during room temperature storage. Poult. Sci., 99: 604-611. DOI: 10.3382/ps/pez546
[57] Atarés, L., Bonilla, J. and Chiralt, A. 2010. Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. J. Food Eng., 100: 678-687. DOI: 10.1016/j.jfoodeng.2010.05.018
[58] Wang, Y., Luo, W., Tu, Y. and Zhao, Y. 2021. Gelatin-based nanocomposite film with bacterial cellulose–MgO nanoparticles and its application in packaging of preserved eggs. Coatings, 11: 39. DOI: 10.3390/coatings11010039
[59] Roy, S., Rhim, J.-W. and Jaiswal, L. 2019. Bioactive agar-based functional composite film incorporated with copper sulfide nanoparticles. Food Hydrocoll., 93: 156–166.
[60] Riazi Kermani, P., Khademi Shurmasti, D. and Alizadeh Karsalari, A. 2023. Optimization of chitosan film and effect of mixing ratio in chitosan-polyvinyl alcohol coating on internal quality parameters of eggs. Quality and Durability of Agricultural and Food Products, 2(3): 76-90. DOI: 10.30495/qafj.2023.1980315.1057 [In Persian].
[61] Khademi Shurmasti, D., Riazi Kermani, P., Sarvarian, M. and Godswill Awuchi, C. 2023. Egg shelf life can be extended using varied proportions of polyvinyl alcohol/chitosan composite coatings. Food Sci. Nutr., 11(9): 5041-5049. DOI: 10.1002/fsn3.3394
[62] Jiang, Y., Zhuang, C., Zhong, Y., Zhao, Y., Deng, Y., Gao, H., Chen, H. and Mu, H. 2018. Effect of bilayer coating composed of polyvinyl alcohol, chitosan, and sodium alginate on salted duck eggs. Int. J. Food Prop., 21: 1: 868-878, DOI: 10.1080/10942912.2018.1466327
[63] Marasinghe, W.N., Jayathunge, K.G.L.R., Dassanayake, R.S., Liyanage, R., Bandara, P.C., Rajapaksha, S.M. and Gunathilake, C. 2024. Structure, properties, and recent developments in polysaccharide- and aliphatic polyester-based packaging, a review. J. Compos. Sci., 8: 114. DOI: 10.3390/jcs8030114
[64] Khanjari, A., Esmaeili, H. and Hamedi, M. 2023. Shelf-life extension of minced squab using polylactic acid films containing Cinnamomum Verum essential oil. Int. J. Food Microbiol., 385: 109982.