[1] Silva Galaviz, L., Anduro Gom´ez, G., Garza Molina, Z., and Valle Ascencio, F. (2008). Food safety issues and the microbiology of milk and dairy products. Microbiologically Safe Foods, 2003, 147–167. https://doi.org/10.1002/9780470439074.ch7.
[2] Murbach Teles Andrade, B.F., Nunes Barbosa, L., Bérgamo Alves, F.C., Pereira Marques, A. F., Albano, M., Mores Rall, V.L., and Brüggemann, H., Fernandes Júnior, A. (2018). The impact of Cymbopogon martinii essential oil on Cutibacterium (formerly Propionibacterium) acnes strains and its interaction with keratinocytes. Journal of Pharmacy and Pharmacology, 70(12), 1688–1699. https://doi.org/10.1111/JPHP.13011.
[3] Jami, M., Ghanbari, M., Zunabovic, M., Domig, K.J., and Kneifel, W. (2014). Listeria monocytogenes in aquatic food products - a review. Comprehensive Reviews in Food Science and Food Safety, 13, 798–813. https://doi.org/10.1111/1541-4337.12092.
[4] Novoslavskij, A., Terentjeva, M., Eizenberga, I., Valci, O., Bartkevi, V., and Aivars, B. (2016). Major foodborne pathogens in fish and fish products : a review. Annals of Microbiology, 66(2016), 1-15. https://doi.org/10.1007/s13213-015-1102-5
[5] Piotrowska, M., and Popowska, M. (2014). The prevalence of antibiotic resistance genes among Aeromonas species in aquatic environments. Annals of Microbiology, 64, 921–934. https://doi.org/10.1007/s13213-014-0911-2
[6] Vaiyapuri, M., Joseph, T. C., Rao, B. M., and Lalitha, K. V. (2019). Methicillin-resistant Staphylococcus aureus in seafood: prevalence, laboratory detection, clonal nature, and control in seafood chain. Journal of Food Science, 84(12), 3341-3351. https://doi.org/10.1111/1750-3841.14915
[7] Rippen, T. E., and Skonberg, D. (2012). Handling of Fresh Fish. In L. Ankenman Granata, F. Jr, R. E. Martin (Eds.), The Seafood Industry: Species, Products, Processing, and Safety (Second Edi, pp. 249–260). Springer.
[8] Colombo, F., Cattaneo, P., Confalonieri, E., and Bernardi, C. (2018). Histamine food poisonings: a systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition, 58(7), 1131-1151.
[9] Sheng, L., and Wang, L. (2021). The microbial safety of fish and fish products : Recent advances in understanding its significance, contamination sources, and control strategies. Comprehensive Reviews in Food Science and Food Safety, 20(1), 738-786. https://doi.org/10.1111/1541-4337.12671
[10] Atyah, M. A. S., Zamri-saad, M., and Siti-zahrah, A. (2010). First report of methicillin-resistant Staphylococcus aureus from cage-cultured tilapia (Oreochromis niloticus). Veterinary Microbiology, 144(3–4), 502–504. https://doi.org/10.1016/j.vetmic.2010.02.004
[11] Bean, Goulding, Lao, C., and J. Angulo, F. (1996). Surveillance Surveillance for Foodborne-Disease Outbreaks — United States, 1988 – 1992. 45(Cdc), 1988–1992.
[12] Yukgehnaish, K., Kumar, P., Sivachandran, P., Marimuthu, K., Arshad, A., Paray, B.A., and Arockiaraj, J. (2020). Gut microbiota metagenomics in aquaculture: factors influencing gut microbiome and its physiological role in fish. Reviews in Aquaculture, 12(3), 1903–1927. https://doi.org/10.1111/raq.12416
[13] Albuquerque, W., Macrae, A., Sousa, O., Vieira, G.H.F., and Vieira, R.H.S. (2007). Multiple drug resistant Staphylococcus aureus strains isolated from a fish market and from fish handlers. Brazilian Journal of Microbiology, 38(1), 131–134.
[14] Hong Rhee, C., and Woo, G. (2010). Emergence and characterization of foodborne methicillin-resistant Staphylococcus aureus in Korea. Journal of Food Protection, 73(12), 2285–2290.
[15] Pratama, A. (2024). Tingkatan mutu dan penanganan dingin rantai suplai udang windu di pelabuhan perikanan selili samarinda. Bogor (ID), IPB University (In Indonesia)
[16] Asril, M., and Lisafitri, Y. (2020). Isolation of genus Pseudomonas, a phosphate solubilizing bacteria from the acid soil of Institut Teknologi Sumatera’s former rubber plantation site. Jurnal Teknologi Lingkungan, 21(1), 40–48. https://doi.org/10.29122/JTL.V21I1.3743
[17] Asril, M., Rini, I.A., Agustin, R., Ivanka, T., and Putri, A.N. (2021). Bacteriological quality of roadside thai tea beverages: case study of four district around the Sumatera Institute of Technology area in Lampung province. Jurnal Ekologi Kesehatan, 20(1), 45–55. https://doi.org/10.22435/JEK.V20I1.4636
[18] Atlas, R. M., and Snyder, J.W. (2014). Handbook of media for clinical and public health microbiology. In “Handbook of Media for Clinical and Public Health Microbiology”, CRC Press.
[19] Rizki, Z., Fitriana, F., and Jumadewi, A. (2022). Identification of the number of germs in the dispenser using the TPC (Total Plate Count) method. Jurnal SAGO Gizi Dan Kesehatan, 4(1), 38-43. https://doi.org/10.30867/gikes.v4i1.1052
[20] Puspitasari, L., Elfidasari, D., Sasaerila, Y., Dinul, Q., and Fatkhurokhim. (2017). Deteksi bakteri pencemar lingkungan ( coliform) pada ikan sapu-sapu asal sungai Ciliwung. Jurnal Al-Azhar Indonesia Seri Sains dan Teknologi, 4(1), 24–27.
[21] Saputri, E.T., and Efendy, M. (2020). The density of the bacteria coliform as an indicator of biological pollution in the sepuluh coastal waters of the Bangkalan Regency, Juvenil: Jurnal Ilmiah Kelautan Dan Perikanan, 1(2), 243–249. https://doi.org/10.21107/juvenil.v1i2.7579
[22] Ercumen, A., Pickering, A.J., Kwong, L.H., Arnold, B.F., Parvez, S.M., Alam, M., Sen, D., Islam, S., Kullmann, C., Chase, C., Ahmed, R., Unicomb, L., Luby, S.P., and Colford, J. M. (2017). Animal feces contribute to domestic fecal contamination: evidence from E. coli measured in water, hands, food, flies, and soil in Bangladesh. Environmental Science and Technology, 51(15), 8725–8734. https://doi.org/10.1021/acs.est.7b01710
[23] Widyanti, T., and Fatmawati, A. (2022). Deteksi Kelompok Enterobacteriaceae pada Tanah di Lingkungan Tempat. Jurnal Ilmu Alam dan Lingkungan, 13(1), 23–31.
[24] Navab-Daneshmand, T., Friedrich, M.N.D., Gächter, M., Montealegre, M.C., Mlambo, L.S., Nhiwatiwa, T., Mosler, H.J., and Julian, T.R. (2018). Escherichia coli contamination across multiple environmental compartments (soil, hands, drinking water, and handwashing water) in urban harare: correlations and risk factors. American Journal of Tropical Medicine and Hygiene, 98(3), 803–813. https://doi.org/10.4269/ajtmh.17-0521
[25] Fuhrmeister, E.R., Ercumen, A., Grembi, J.A., Islam, M., Pickering, A.J., and Nelson, K.L. (2020). Shared bacterial communities between soil, stored drinking water, and hands in rural Bangladeshi households. Water Research X, 9(100056), 1–10. https://doi.org/10.1016/j.wroa.2020.100056
[26] Fernandes, D.V., Castro, V.S., and Neto, A., Figueiredo, E.E. (2018). Salmonella spp. in the fish production chain: a review. Ciência Rural, 48(8), e20180141. https://doi.org/10.1590/0103-8478CR20180141
[27] Hassan, R., Tecle, S., Adcock, B., Kellis, M., Weiss, J., Saupe, A., Sorenson, A., Klos, R., Blankenship, J., Blessington, T., Whitlock, L., Carleton, H. A., Concepción-Acevedo, J., Tolar, B., Wise, M., and Neil, K. P. (2018). Multistate outbreak of Salmonella paratyphi B variant L(+) tartrate(+) and Salmonella Weltevreden infections linked to imported frozen raw tuna: USA, March-July 2015. Epidemiology and Infection, 146(11), 1461–1467. https://doi.org/10.1017/S0950268818001462
[28] EFSA. (2017). Data dictionaries—guidelines for reporting data on zoonoses, antimicrobial resistance and food‐borne outbreaks using the EFSA data models for the Data Collection Framework (DCF) to be used in 2017, for 2016 data. EFSA Supporting Publications, 14(2). https://doi.org/10.2903/sp.efsa.2017.en-1178
[29] Bibi, F., Qaisrani, S.N., Ahmad, A.N., Akhtar, M., Khan, B.N., and Ali, Z. (2015). Occurrence of Salmonella in freshwater fishes: A review. Journal of Animal and Plant Sciences, 25(3), 303–310.
[30] Assefa, A., and Girma, M. (2019). Prevalence and antimicrobial susceptibility patterns of Salmonella and Shigella isolates among children aged below five years with diarrhea attending Robe General Hospital and Goba Referral Hospital, South East Ethiopia. Tropical Diseases, Travel Medicine and Vaccines, 5(1), 1–11. https://doi.org/10.1186/S40794-019-0096-6/TABLES/5
[31] Nisa, I., Qasim, M., Driessen, A., Nijland, J., Rafiullah, Ali, A., Mirza, M.R., Khan, M.A., Khan, T.A., Jalal, A., and Rahman, H. (2021). Prevalence and associated risk factors of Shigella flexneri isolated from drinking water and retail raw foods in Peshawar, Pakistan. Journal of Food Science, 86(6), 2579–2589. https://doi.org/10.1111/1750-3841.15777
[32] Hoffmann, M., Luo, Y., Monday, S.R., Gonzalez-Escalona, N., Ottesen, A.R., Muruvanda, T., Wang, C., Kastanis, G., Keys, C., Janies, D., Senturk, I.F., Catalyurek, U.V., Wang, H., Hammack, T.S., Wolfgang, W.J., Schoonmaker-Bopp, D., Chu, A., Myers, R., Haendiges, J., and Brown, E.W. (2016). Tracing origins of the salmonella bareilly strain causing a food-borne outbreak in the United States. Journal of Infectious Diseases, 213(4), 502–508. https://doi.org/10.1093/infdis/jiv297
[33] Vasemagi, A., Visse, M., and Kisand, V. (2017). Effect of environmental factors and an emerging parasitic disease on gut microbiome of wild salmonid fish. mSphere, 2(6), 1–13.
[34] Asril, M., Rini, I.A., Rismawati, R., Yuspiah, E. F., Ananta, M. I., Ivanka, T., Agustin, R., and Putri, A.N. (2023). Assessment of bacterial contaminants associated with hygiene behaviour in thai tea sold on the roadside around educational area, Lampung, Indonesia. Jurnal Kesehatan Lingkungan, 15(3), 183–195. https://doi.org/10.20473/JKL.V15I3.2023.183-195
[35] Tirado, C., and Schmidt, K. (2001). WHO Surveillance programme for control of foodborne infections and intoxications : preliminary results and trends across greater europe. Journal of Infection, 43(1), 80–84. https://doi.org/10.1053/jinf.2001.0861
[36] Loir, Y. Le, Baron, F., and Gautier, M. (2003). Staphylococcus aureus and food poisoning. Genetics Molecular Research, 2(1), 63-76.
[37] Solano, R., Lafuente, S., Sabate, S., Tortajada, C., García de Olalla, P., Hernando, A.V., and Caylà, J. (2013). Enterotoxin production by Staphylococcus aureus: An outbreak at a Barcelona sports club in July 2011. Food Control, 33(1), 114–118. https://doi.org/10.1016/j.foodcont.2013.01.014
[38] Atanassova, V., Reich, F., and Klein, G. (2008). Microbiological quality of Sushi from Sushi bars and retailers. Journal of Food Protection, 71(4), 860–864. https://doi.org/10.4315/0362-028X-71.4.860
[39] Abdalrahman, L.S., Wells, H., and Fakhr, M.K. (2015). Staphylococcus aureus is more prevalent in retail beef livers than in pork and other beef cuts. Pathogens, 4(2), 182–198. https://doi.org/10.3390/pathogens4020182
[40] Simon, S.S., and Sanjeev, S. (2007). Prevalence of enterotoxigenic Staphylococcus aureus in fishery products and fish processing factory workers. Food Control, 18, 1565–1568. https://doi.org/10.1016/j.foodcont.2006.12.007
[41] Arvina, A., Fakhrurrazi, F., and Abrar, M. (2017). Isolation of bacteria Pseudomonas sp on Talang-Talang salt fish (Scomberoides tala) at Puloet Village Leupung Aceh Besar regency. Jurnal Ilmiah Mahasiswa Veteriner, 1(3), 547–551.
[42] Hayatgheib, N., Moreau, E., Calvez, S., Lepelletier, D., and Pouliquen, H. (2020). A review of functional feeds and the control of Aeromonas infections in freshwater fish. Aquaculture International, 28(3), 1083–1123. https://doi.org/10.1007/s10499-020-00514-3
[43] Aberoum, A., and Jooyandeh, H. (2010). A review on occurrence and characterization of the Aeromonas species from marine fishes. World Journal of Fish and Marine Science, 2(6), 519-523.
[44] Li, X.X., Tian, X., and Li, J.R. (2016). Effect of high hydrostatic pressure on the microbiological, biochemical characteristics of white shrimp Litopenaeus vannamei. Food Science and Technology International, 22(4), 302–312. https://doi.org/10.1177/1082013215596650
[45] Uren Webster, T. M., Consuegra, S., Hitchings, M., and Garcia de Leaniz, C. (2018). Interpopulation variation in the atlantic salmon microbiome reflects environmental and genetic diversity. Applied and Environmental Microbiology, 84(16), 1-14. https://doi.org/10.1128/aem.00691-18
[46] Oliveira, J.G.C., Silva, L.P.S., Malhado, A.C. M., Batista, V.S., Fabré, N.N., and Ladle, R.J. (2016). Artisanal fisheries research: A need for globalization? PLoS ONE, 11(3), 1–10. https://doi.org/10.1371/journal.pone.0150689
[47] Pratama, A., Mustaruddin, M., and Purwangka, F. (2024). Contaminating bacteria presence in the water used for fisheries products washing at selili fishing port, Samarinda. ALBACORE: Jurnal Penelitian Perikanan Laut, 8(1), 35–44.
[48] Sasakova, N., Gregova, G., Takacova, D., Mojzisova, J., Papajova, I., Venglovsky, J., Szaboova, T., and Kovacova, S. (2018). Pollution of surface and ground water by sources related to agricultural activities. Frontiers in Sustainable Food Systems, 2(42), 1-11. https://doi.org/10.3389/fsufs.2018.00042
[49] Kim, H.W., Hong, Y.J., Jo, J.I., Ha, S.D., Kim, S.H., Lee, H.J., and Rhee, M.S. (2017). Raw ready-to-eat seafood safety: microbiological quality of the various seafood species available in fishery, hyper and online markets. Letters in Applied Microbiology, 64(1), 27–34. https://doi.org/10.1111/lam.12688
[50] Gonçalves, A.A., and Gindri Junior, C.S.G. (2009). The effect of glaze uptake on storage quality of frozen shrimp. Journal of Food Engineering, 90(2), 285–290. https://doi.org/10.1016/j.jfoodeng.2008.06.038
[51] Wang, J.J., Lin, T., Li, J.B., Liao, C., Pan, Y.J., and Zhao, Y. (2014). Effect of acidic electrolyzed water ice on quality of shrimp in dark condition. Food Control, 35(1), 207–212. https://doi.org/10.1016/j.foodcont.2013.07.005
[52] Feliciano, L., Lee, J., Lopes, J.A., and Pascall, M.A. (2010). Efficacy of sanitized ice in reducing bacterial load on fish fillet and in the water collected from the melted ice. Journal of Food Science, 75(4), 231–238. https://doi.org/10.1111/j.1750-3841.2010.01583.x
[53] Karimela, E.J., Ijong, F.G., and Dien, H.A. (2017). Characteristics of Staphylococcus aureus isolated smoked fish pinekuhe from traditionally processed from Sangihe District. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(1), 188–198. https://doi.org/10.17844/jphpi.2017.20.1.356
[54] Abd-El-Aziz, N.A., and Moharram, Y.G. (2016). Microbiological quality of imported frozen shrimp in Egypt. Annals of Agricultural Sciences, 61(1), 35–40. https://doi.org/10.1016/j.aoas.2016.04.002
[55] Mwove, J., Imathiu, S., Orina, I., and Karanja, P. (2020). Food safety knowledge and practices of street food vendors in selected locations within Kiambu County, Kenya. African Journal of Food Science, 14(6), 174–185. https://doi.org/10.5897/AJFS2020.1929
[56] Traoré, O., Nyholm, O., Siitonen, A., Bonkoungou, I. J. O., Traoré, A. S., and Barro, N. (2015). Prevalence and diversity of Salmonella enterica in water, fish and lettuce in Ouagadougou , Burkina Faso. BMC Microbiology, 15(151), 1–7. https://doi.org/10.1186/s12866-015-0484-7
[57] Duarte, D.A.M., Ribeiro, A.R., Vasconcelos, A.M.M., Silva, J.V.D., and Andrade, P.L.A. De, Santana, A.A.P. (2010). Occurrence of Salmonella spp. and coagulase positive Staphylococcus in fish and crustaceans in the northeast of Brazil. Arquivos do Instituto Biologico, 77(4), 711–713.
[58] Paudyal, N., Anihouvi, V., Hounhouigan, J., Ignatius, M., Sekwati-monang, B., Amoa-awua, W., Atter, A., Bernice, N., Mbugua, S., Asagbra, A., Abdelgadir, W., Nakavuma, J., Jakobsen, M., and Fang, W. (2017). Prevalence of foodborne pathogens in food from selected African countries – a meta-analysis. International Journal of Food Microbiology, 249, 35–43. https://doi.org/10.1016/j.ijfoodmicro.2017.03.002
[59] Zhang, J., Yang, X., Kuang, D., Shi, X., Xiao, W., Zhang, J., Gu, Z., Xu, X., and Meng, J. (2015). Prevalence of antimicrobial resistance of non-typhoidal Salmonella serovars in retail aquaculture products. International Journal of Food Microbiology, 210, 47–52. https://doi.org/10.1016/j.ijfoodmicro.2015.04.019