اثر مکمل پودر چای سبز بر پتانسیل پروبیوتیکی، خواص آنتی اکسیدانی، فیزیکوشیمیایی و حسی بستنی پروبیوتیک

نویسندگان
گروه زیست شناسی، واحد اسلامشهر، دانشگاه آزاد اسلامی، اسلامشهر، ایران
چکیده
در سال های اخیر، تقاضا برای غذاهای سالم و کاربردی افزایش یافته است و صنایع غذایی در تلاش است تا این نیازهای جدید را برطرف کند. این مطالعه با هدف ارزیابی اثر غلظت‌های مختلف پودر چای سبز بر ویژگی‌های فیزیکوشیمیایی، ویژگی‌های حسی، فعالیت آنتی‌اکسیدانی و زنده مانی باکتری های پروبیوتیک در یک دوره نگهداری 90 روزه انجام شد. هفت نمونه بستنی حاوی 0 تا 3 درصد پودر چای سبز و لاکتوباسیلوس کازئی تولید و در روزهای 0، 30، 60 و 90 مورد ارزیابی قرار گرفت. از روش های فولین سیکالتو و دی فنیل پیکریل هیدرازیل برای تعیین محتوای پلی فنل کل و خاصیت آنتی اکسیدانی استفاده شد. نتایج نشان داد که اسیدیته، فعالیت آنتی اکسیدانی، پلی فنل کل، ویسکوزیته، مقاومت به ذوب و تعداد سلول های زنده لاکتوباسیلوس کازئی با افزایش غلظت پودر چای سبز افزایش یافت (05/0>p). همچنین با گذشت زمان، تفاوت معنی داری در ویسکوزیته و مواد جامد کل مشاهده نشد، اما فنل کل، فعالیت آنتی اکسیدانی و زنده مانی باکتری های پروبیوتیک به طور معنی داری کاهش یافت (05/0>p). نتایج ارزیابی حسی نشان داد که طعم و رنگ نمونه‌های حاوی 5/1 و 2 درصد پودر چای سبز بالاترین امتیاز را به خود اختصاص دادند (05/0>p). نمونه‌های حاوی 5/1 درصد پودر چای سبز که دارای بالاترین امتیاز رنگ، طعم و مقبولیت کلی، فعالیت آنتی‌اکسیدانی بالا و تعداد سلول های زنده لاکتوباسیلوس کازئی بیش از cfu/g 107 در طول دوره نگهداری بودند، می‌توانند به عنوان یک محصول جدید با خواص ارتقاء دهنده سلامت معرفی شوند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of green tea powder supplementation on probiotic potential, antioxidant, physicochemical, and sensory properties of probiotic ice cream

نویسندگان English

Ayat Taghavi Zonus
Maryam Ghane
Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
چکیده English

In recent years, the demand for healthy functional foods has increased and food industry is trying to meet these new needs. This study aimed to assess the effect of different concentrations of green tea powder (GTP) on the physicochemical characteristics, sensory properties, antioxidant activity, and culture viability of probiotic ice cream over a 90-day storage period. Seven ice cream samples containing 0–3% GTP and Lactobacillus casei were produced and evaluated at 0, 30, 60, and 90 days of storage. Folin-Ciocalteu and diphenyl picrylhydrazyl (DPPH) methods were applied to determine the total polyphenol content and antioxidant property, respectively. The results showed that the titratable acidity, antioxidant activity, total polyphenols, viscosity, melting resistance, and viable count of L. casei increased with increasing GTP concentration (p<0.05). Also over time, there was no significant difference in viscosity and total solids, but the total phenol, antioxidant activity, and viability of probiotic bacteria decreased significantly (p<0.05). The results of the sensory evaluation revealed that the flavor and color of the samples containing 1.5 and 2% GTP had the highest scores (p<0.05). Samples containing 1.5 % GTP that had the highest score of color, flavor, and overall acceptability, high antioxidant activity and viable count of L. casei ≥ 107 cfu/g during storage could be introduced as a new product with health-promoting properties.

کلیدواژه‌ها English

Antioxidant activity
Green tea powder
Probiotic ice cream
Probiotic viability
[1] Gremski, L. A., Coelho, A. L. K., Santos, J. S., Daguer, H., Molognoni, L., do Prado-Silva, L., Sant'Ana, A. S., da Silva Rocha, R., da Silva, M. C., & Cruz, A. G. (2019). Antioxidants-rich ice cream containing herbal extracts and fructooligossaccharides: manufacture, functional and sensory properties. Food chemistry, 298, 125098.
[2] Javanmard, A., Ashtari, S., Sabet, B., Davoodi, S. H., Rostami-Nejad, M., Akbari, M. E., Niaz, A., & Mortazavian, A. M. (2018). Probiotics and their role in gastrointestinal cancers prevention and treatment; an overview. Gastroenterology and hepatology from bed to bench, 11(4), 284.
[3] Ghane, M., Babaeekhou, L., Najafabadi, B. M., & Mirmostafa, M. S. (2021). Lactic acid bacteria from kefir grains: Potential probiotics with antagonistic activity against multidrug resistant Gram-negative bacteria. Malaysian Journal of Microbiology, 17(4).
[4] Ghane, M., Babaeekhou, L., & Ketabi, S. S. (2020). Antibiofilm activity of kefir probiotic lactobacilli against uropathogenic Escherichia coli (UPEC). Avicenna Journal of Medical Biotechnology, 12(4), 221.
[5] Jones, M. L., Martoni, C. J., Parent, M., & Prakash, S. (2012). Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. British Journal of Nutrition, 107(10), 1505-1513.
]6] Vanderhoof, J. A. & Young, R. J. (1998). Use of probiotics in childhood gastrointestinal disorders. Journal of Pediatric Gastroenterology and Nutrition, 27(3), 323-332.
[7] Aragón, F., Carino, S., Perdigón, G., & de LeBlanc, A. d. M. (2014). The administration of milk fermented by the probiotic Lactobacillus casei CRL 431 exerts an immunomodulatory effect against a breast tumour in a mouse model. Immunobiology, 219(6), 457-464.
[8] Shokery, E. S., El-Ziney, M. G., Yossef, A. H., & Mashaly, R. I. (2017). Effect of green tea and Moringa leave extracts fortification on the physicochemical, rheological, sensory and antioxidant properties of set-type yoghurt. J Adv Dairy Res, 5(179), 2.
[9] El-Sayed, S. M. & Youssef, A. M. (2019). Potential application of herbs and spices and their effects in functional dairy products. Heliyon, 5(6), e01989.
[10] Karaman, S. & Kayacier, A. (2012). Rheology of ice cream mix flavored with black tea or herbal teas and effect of flavoring on the sensory properties of ice cream. Food and Bioprocess Technology, 5(8), 3159-3169.
[11] Akalın, A., Kesenkas, H., Dinkci, N., Unal, G., Ozer, E., & Kınık, O. (2018). Enrichment of probiotic ice cream with different dietary fibers: Structural characteristics and culture viability. Journal of dairy science, 101(1), 37-46.
[12] Hwang, J.-Y., Shyu, Y.-S., & Hsu, C.-K. (2009). Grape wine lees improves the rheological and adds antioxidant properties to ice cream. LWT-Food Science and Technology, 42(1), 312-318.
[13] Soukoulis, C., Lebesi, D., & Tzia, C. (2009). Enrichment of ice cream with dietary fibre: Effects on rheological properties, ice crystallisation and glass transition phenomena. Food Chemistry, 115(2), 665-671.
[14] ÇAKMAKÇI, S., Emel, Ö., ÇAKIROĞLU, K., Polat, A., Gülçin, İ., ILGAZ, Ş., Seyyedcheraghi, K., & ÖZHAMAMCI, İ. (2019). Probiotic shelf life, antioxidant, sensory, physical and chemical properties of yogurts produced with Lactobacillus acidophilus and green tea powder. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 25(5).
[15] Najgebauer-Lejko, D. (2014). Effect of green tea supplementation on the microbiological, antioxidant, and sensory properties of probiotic milks. Dairy science & technology, 94(4), 327-339.
[16] Vasiljevic, T. & Shah, N. P. (2008). Probiotics—from Metchnikoff to bioactives. International Dairy Journal, 18(7), 714-728.
[17] Marhamatizadeh, M. H., Ehsandoost, E., & Gholami, P. (2013). The influence of green tea (Camellia sinensis L.) extract on characteristic of probiotic bacteria in milk and yoghurt during fermentation and refrigerated storage. International Journal of Farming and Allied Sciences, 2(17), 599-606.
[18] AOAC, O., Of? cial Methods of Analysis of the Association of Of? cial Analytical Chemists. 1984, Author Washington, DC.
[19] CUNIFF, P. E., Official Methods of Analysis of AOAC International: Agricultural Chemicals; Contaminants; Drugs. 1995: AOAC International.
[20] ISO, ISO 14502-1: 2005, Determination of substances characteristic of green and black tea—Part 1: Content of total polyphenols in tea-colorimetric method using Folin-Ciocalteu reagent, in ISO 14502-1 International Standardization. 2005, International Organization for Standardization Switzerland. p. 10.
[21] ISO, I. (2005). Determination of Substances Characteristic of Green and Black Tea, Part 2: Content of Catechins in Green Tea–Method Using High-Performance Liquid Chromatography.
[22] Akalın, A. & Erişir, D. (2008). Effects of inulin and oligofructose on the rheological characteristics and probiotic culture survival in low‐fat probiotic ice cream. Journal of food science, 73(4), M184-M188.
[23] Akalın, A. S., Karagözlü, C., & Ünal, G. (2008). Rheological properties of reduced-fat and low-fat ice cream containing whey protein isolate and inulin. European Food Research and Technology, 227(3), 889-895.
[24] Bahramparvar, M., HADDAD KHODAPARAST, M. H., & RAZAVI, S. M. (2009). The effect of Lallemantia royleana (Balangu) seed, palmate‐tuber salep and carboxymethylcellulose gums on the physicochemical and sensory properties of typical soft ice cream. International journal of dairy technology, 62(4), 571-576.
[25] Maisuthisakul, P., Suttajit, M., & Pongsawatmanit, R. (2007). Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food chemistry, 100(4), 1409-1418.
[26] Kanika, M., Nazim, M., Nusrat, J., & Dipak, K. (2015). Nutritional quality, sensory evaluation, phytochemicals analyses and in-vitro antioxidant activity of the newly developed soy ice cream. American Research Journal of Agriculture, 1(1), 44-54.
[27] Crizel, T. d. M., Araujo, R. R. d., Rios, A. d. O., Rech, R., & Flôres, S. H. (2014). Orange fiber as a novel fat replacer in lemon ice cream. Food Science and Technology, 34(2), 332-340.
[28] Dönmez, Ö., Mogol, B. A., & Gökmen, V. (2017). Syneresis and rheological behaviors of set yogurt containing green tea and green coffee powders. Journal of dairy science, 100(2), 901-907.
[29] Di Criscio, T., Fratianni, A., Mignogna, R., Cinquanta, L., Coppola, R., Sorrentino, E., & Panfili, G. (2010). Production of functional probiotic, prebiotic, and synbiotic ice creams. Journal of dairy science, 93(10), 4555-4564.
[30] GOLESTANI, M., POURAHMAD, R., & MAHDAVI, A. H. (2016). The Effect of Inulin on the Viability of Probiotic Bacteria and the Physical, Chemical and Sensory Characteristics of Fermented and Non-Fermented Synbiotic Ice Cream.
[31] Aime, D., Arntfield, S., Malcolmson, L., & Ryland, D. (2001). Textural analysis of fat reduced vanilla ice cream products. Food research international, 34(2-3), 237-246.
[32] Najgebauer-Lejko, D., Witek, M., Żmudziński, D., & Ptaszek, A. (2020). Changes in the viscosity, textural properties, and water status in yogurt gel upon supplementation with green and Pu-erh teas. Journal of Dairy Science, 103(12), 11039-11049.
[33] Østlie, H. M., Treimo, J., & Narvhus, J. A. (2005). Effect of temperature on growth and metabolism of probiotic bacteria in milk. International Dairy Journal, 15(10), 989-997.
[34] Gaudreau, H., Champagne, C., Remondetto, G., Bazinet, L., & Subirade, M. (2013). Effect of catechins on the growth of oxygen-sensitive probiotic bacteria. Food research international, 53(2), 751-757.
[35] Shah, N., Ding, W., Fallourd, M., & Leyer, G. (2010). Improving the stability of probiotic bacteria in model fruit juices using vitamins and antioxidants. Journal of food science, 75(5), M278-M282.
[36] Soukoulis, C., Chandrinos, I., & Tzia, C. (2008). Study of the functionality of selected hydrocolloids and their blends with κ-carrageenan on storage quality of vanilla ice cream. LWT-Food Science and Technology, 41(10), 1816-1827.
[37] Glibowski, P., Karwowska, M., Latoch, A., Nosowska, K., & Udeh, K. O. (2019). Effect of different tea extracts on the physicochemical and sensory parameters of stirred probiotic yoghurts. Acta Scientiarum Polonorum Technologia Alimentaria, 18(2), 185-193.