توسعه محفظه شیشه ای شکل هلیکس برای کاربردهای تصفیه میدان های الکتریکی پالسی در صنعت آبمیوه سازی

نویسندگان
1 مربی دانشگاه، دانشکده مهندسی برق، دانشگاه آزاد اسلامی واحد مرودشت، مرودشت، ایران
2 استادیار، دانشکده مهندسی، محاسبات و علوم، دانشگاه صنعتی سوینبرن ساراواک، 93350 کوچینگ، مالزی
3 استادیار دانشگاه مهندسی و فناوری اطلاعات خواجه فرید رحیم یارخان پاکستان
چکیده
چکیده: صنعت آبمیوه به دنبال سیستم‌های راکتور میدان‌های الکتریکی پالسی مقرون‌به‌صرفه (PEF) برای تصفیه سیال در مقیاس حجیم است. این مقاله توسعه یک محفظه شیشه‌ای مارپیچ شکل (HSGC) را برای بهبود و بررسی PEF در صنعت آبمیوه مورد بحث قرار می‌دهد. تصفیه PEF یک فناوری غیر حرارتی است که برای نگهداری و فرآوری آب میوه استفاده می شود. هدف طراحی HSGC بهبود کارایی و اثربخشی درمان PEF با افزایش توزیع میدان های الکتریکی در داخل محفظه است. اعتقاد بر این است که درمان PEF سبب بهبود پارامترهای بیوشیمیایی و فیزیکی می‌شود. طرح‌های سنتی ویژگی‌های خوبی برای یکنواختی درمان PEF و زمان ماندگاری طولانی سیال ندارند. HSGC توسعه‌یافته با موفقیت بر روی نمونه‌های آب انبه اعمال شد و تنوع پارامترهای شیمیایی از جمله ویسکوزیته و هدایت، از جمله غیرفعال‌سازی میکروبی میکروارگانیسم‌ها (اشرشیاکُلی) مورد بررسی قرار گرفت. نتایج با مقادیر جدید شرایط آبمیوه مقایسه شده است. نتایج شبیه سازی نشان می دهد که سیال آب میوه در محدوده دمای معمولی 25-20 درجه سانتی گراد باقی می ماند. نتایج دلگرم‌کننده و مورد بحث قرار گرفت و نشان داد که HSGC یک گزینه مناسب برای پردازش آب انبه ترش با مقدار قابل‌توجهی غیرفعال‌سازی میکروبی بدون تأثیر نامطلوب بر پارامترهای فیزیکی و بیوشیمیایی است. علاوه بر این، برای نگهداری طولانی مدت آب میوه و مایعات موثر است. زمان ماندگاری در محفظه تصفیه، شدت و یکنواختی تیمار PEF بر تنوع مواد شیمیایی تأثیر می گذارد. نتایج، امکان و مزایای استفاده از محفظه مارپیچ شکل را برای درمان PEF نشان می‌دهد، که مزایای بالقوه‌ای برای کیفیت آبمیوه و ماندگاری دارد. به طور کلی، این مقاله بینش های ارزشمندی را در مورد توسعه فناوری های نوآورانه برای صنعت آبمیوه ارائه می دهد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Development of Helix Shape Glass Chamber for Pulsed Electric Fields Treatment Applications in Juice Industry

نویسندگان English

Ali Mohammad Dastgheib 1
Hadi Nabipour Afrouzi 2
Seyed Mohamad Zafar Iqbal 3
1 Lecturer, Department Of electrical engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
2 Assistant professor, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak, 93350 Kuching, Malaysia
3 Assistant professor, Khwaja Fareed University of Engineering and Information Technology,Rahim Yar Khan , Pakistan
چکیده English

The juice industry is seeking cost-effective Pulsed Electric Fields (PEF) reactor systems to treat bulk fluid. The paper discusses the development of a helix-shaped glass chamber (HSGC) for PEF treatment in the juice industry. PEF treatment is a non-thermal technology used for the preservation and processing of fruit juices. The HSGC design aims to improve the efficiency and effectiveness of PEF treatment by enhancing the distribution of electric fields within the chamber. The PEF treatment is believed to be biochemical and physical parameters. The traditional designs don't have good attributes for uniformity of PEF treatment and long fluid residence time. The developed HSGC was successfully applied on mango juice samples, and variation of chemical parameters including viscosity and conductivity, including microbial inactivation of microorganisms (Escherichia coli), was explored. The results are compared with the new values of the juice condition. The simulation results indicate that the juice fluid remains at a normal temperature range of 20-25°C. The results were encouraging and discussed, suggesting that HSGC is a viable option for processing sour mango juice with a significant amount of microbial inactivation without adversely affecting the physical and biochemical parameters. In addition, it is effective for long-term preservation of fruit juices and liquids. The residence time in the treatment chamber, the intensity, and uniformity of PEF treatment affect the variation in chemical. The results demonstrate the feasibility and advantages of using the helix-shaped chamber for PEF treatment, offering potential benefits for juice quality and shelf life. Overall, the paper provides valuable insights into the development of innovative technologies for the juice industry.

کلیدواژه‌ها English

Microbial Inactivation
pulsed electric fields
Physical properties
Mango juice
Helix Shape Glass Chamber
Asl, Parisa Jafarian, Vikky Rajulapati, Mohsen Gavahian, Ireneusz Kapusta, Predrag Putnik, Amin Mousavi Khaneghah, and Krystian Marszałek. "Non-thermal plasma technique for preservation of fresh foods: A review." Food Control 134 (2022): 108560.
J. Altuntas, G. A. Evrendilek, M. K. Sangun, and H. Q. Zhang, "Effects of pulsed electric field processing on the quality and microbial inactivation of sour cherry juice," International journal of food science & technology, vol. 45, pp. 899-905, 2010.
I. Aguiló-Aguayo, R. Soliva-Fortuny, and O. Martín-Belloso, "Comparative study on color, viscosity and related enzymes of tomato juice treated by high-intensity pulsed electric fields or heat," European Food Research and Technology, vol. 227, pp. 599-606, 2008.
Taha, Ahmed, Federico Casanova, Povilas Šimonis, Voitech Stankevič, Mohamed AE Gomaa, and Arūnas Stirkė. "Pulsed electric field: fundamentals and effects on the structural and techno-functional properties of dairy and plant proteins." Foods 11, no. 11 (2022): 1556.
F. Torregrosa, C. Cortés, M. J. Esteve, and A. Frígola, "Effect of high-intensity pulsed electric fields processing and conventional heat treatment on orange-carrot juice carotenoids," Journal of Agricultural and Food Chemistry, vol. 53, pp. 9519-9525, 2005.
Zhang, Cheng, Xiaomei Lyu, Rai Naveed Arshad, Rana Muhammad Aadil, Yanjun Tong, Wei Zhao, and Ruijin Yang. "Pulsed electric field as a promising technology for solid foods processing: A review." Food Chemistry 403 (2023): 134367.
Hariono, Budi, A. Brilliantina, E. K. N. Sari, M. F. Kurnianto, F. Erawantini, and S. Kautsar. "Pulsed electric field application on pasteurization of orange milk from low grade orange: study on nutritional, physical, chemical properties, and total microorganism." In IOP Conference Series: Earth and Environmental Science, vol. 980, no. 1, p. 012041. IOP Publishing, 2022.
D. Rodrigo, G. Barbosa-Cánovas, A. Martínez, and M. Rodrigo, "Pectin methyl esterase and natural microflora of fresh mixed orange and carrot juice treated with pulsed electric fields," Journal of Food Protection®, vol. 66, pp. 2336-2342, 2003.
Amine, B., A. Nadir, K. O. Nouara, A. T. Akila, K. Kamelia, and K. B. Ghania. "Impact of Thermal and Non-Thermal Pasteurization on the Microbial Inactivation of Fruit Juice: Review." J Food Microbial Saf Hyg 8 (2023): 198.
S. Min, Z. Jin, S. Min, H. Yeom, and Q. Zhang, "Commercial‐Scale Pulsed Electric Field Processing of Orange Juice," Journal of Food Science, vol. 68, pp. 1265-1271, 2003.
dos Santos Júnior, Luís Carlos Oliveira, Matthias Schulz, Dietrich Knorr, and Edna Regina Amante. "Pulsed electric field for Escherichia coli inactivation in pumpkin juice and nectar." Acta Scientiarum. Technology 44 (2022): e56091-e56091.
A. M. Dastgheib, Z. Buntat, and S. Iqbal, "Effect of High Voltage Electric Field on Pineapple," Advanced Science Letters, vol. 19, pp. 2523-2527, 2013.
A. M. Dastgheib, Z. Buntat, and M. Sidik, "Chemical Analysis on the Effect of Pulsed Electric Fields in Pineapple Juices Preservation," in Applied Mechanics and Materials, 2014, pp. 588-592.
Morais, Aline TB, Sinara TB Morais, Jéssica F. Feitor, Keila N. Cavalcante, Lucas GS Catunda, Markus Walkling-Ribeiro, Daniel R. Cardoso, and Lilia M. Ahrné. "Physico-chemical and structural modifications of caseins in micellar casein isolate induced by pulsed electric field." Innovative Food Science & Emerging Technologies 89 (2023): 103476.
Luo, Xiu-Er, Ruo-Yong Wang, Jin-Hua Wang, Ying Li, Huai-Nan Luo, Xin-An Zeng, Meng-Wai Woo, and Zhong Han. "Combining pulsed electric field and cross-linking to enhance the structural and physicochemical properties of corn porous starch." Food Chemistry 418 (2023): 135971.
Chang, Chao-Kai, Chun-Ta Lung, Mohsen Gavahian, Bara Yudhistira, Min-Hung Chen, Shella Permatasari Santoso, and Chang-Wei Hsieh. "Effect of pulsed electric field-assisted thawing on the gelling properties of pekin duck meat myofibrillar protein." Journal of Food Engineering 350 (2023): 111482.
Chen, Bo-Ru, Zhi-Ming Wang, Jia-Wei Lin, Qing-Hui Wen, Fei-Yue Xu, Jian Li, Rui Wang, and Xin-An Zeng. "Improving emulsification performance of waxy maize starch by esterification combined with pulsed electric field." Food Hydrocolloids 129 (2022): 107655.
Wang, Rui, Qin-Hui Wen, Xin-An Zeng, Jia-Wei Lin, Jian Li, and Fei-Yue Xu. "Binding affinity of curcumin to bovine serum albumin enhanced by pulsed electric field pretreatment." Food Chemistry 377 (2022): 131945.
Guo, Lunan, Xin-Mei Nie, Ya-Hui Yang, Yiping Ren, Xiangli Ding, and Jian-Ya Qian. "Using electric field to modify wet gluten as meat analogue material: A comparative study between pulsed and direct current electric fields." Innovative Food Science & Emerging Technologies 84 (2023): 103300.
Guo, Xiaoai, Kemal Aganovic, Ute Bindrich, Andreas Juadjur, Christian Hertel, Edward Ebert, Johannes große Macke, Christoph Geil, and Volker Heinz. "Extraction of protein from juice blend of grass and clover pressed by a pilot pressing facility combined with a pulsed electric field treatment." Future Foods 6 (2022): 100173.
Timmermans, Rian AH, Wibke SU Roland, Kees van Kekem, Ariette M. Matser, and Martinus AJS van Boekel. "Effect of Pasteurization by Moderate Intensity Pulsed Electric Fields (PEF) Treatment Compared to Thermal Treatment on Quality Attributes of Fresh Orange Juice." Foods 11, no. 21 (2022): 3360.
Conde, Ladie Anne, Biniam Kebede, Sze Ying Leong, and Indrawati Oey. "Changes in Starch In Vitro Digestibility and Properties of Cassava Flour Due to Pulsed Electric Field Processing." Foods 11, no. 22 (2022): 3714.
S. R. Alkhafaji and M. Farid, "An investigation on pulsed electric fields technology using new treatment chamber design," Innovative Food Science & Emerging Technologies, vol. 8, pp. 205-212, 2007.
S. Toepfl, V. Heinz, and D. Knorr, "High intensity pulsed electric fields applied for food preservation," Chemical engineering and processing: process intensification, vol. 46, pp. 537-546, 2007.
Zhang, Zhenna, Bin Zhang, Ruijin Yang, and Wei Zhao. "Recent developments in the preservation of raw fresh food by pulsed electric field." Food Reviews International 38, no. sup1 (2022): 247-265.
S. l. Bendicho, G. V. Barbosa-Cánovas, and O. Martı́n, "Milk processing by high intensity pulsed electric fields," Trends in Food Science & Technology, vol. 13, pp. 195-204, 2002.
P. Manas and R. Pagán, "Microbial inactivation by new technologies of food preservation," Journal of Applied Microbiology, vol. 98, pp. 1387-1399, 2005.
P. C. Wouters, I. Alvarez, and J. Raso, "Critical factors determining inactivation kinetics by pulsed electric field food processing," Trends in Food Science & Technology, vol. 12, pp. 112-121, 2001.
Kantala, Chatchawan, Supakiat Supasin, Panich Intra, and Phadungsak Rattanadecho. "Evaluation of pulsed electric field and conventional thermal processing for microbial inactivation in Thai orange juice." Foods 11, no. 8 (2022): 1102.
Qiu, Xing, Jinhui Chang, Yong Jin, and Wen Jie Wu. "Pulsed Electric Field Treatments with Nonlethal Field Strength Alter the Properties of Bacterial Spores." Journal of Food Protection 85, no. 7 (2022): 1053-1060.
Ziaiifa, Aman Mohamad, Seid Mahdi Jafari, and Sara Aghajanzadeh. "Design and manufacturing of key lime juice processing system by pulsed electric field and evaluation of its quality characteristics." Journal of food science and technology (Iran) 19, no. 132 (2023): 33-49.
Trusinska, Magdalena, Federico Drudi, Katarzyna Rybak, Urszula Tylewicz, and Malgorzata Nowacka. "Effect of the Pulsed Electric Field Treatment on Physical, Chemical and Structural Changes of Vacuum Impregnated Apple Tissue in Aloe Vera Juices." Foods 12, no. 21 (2023): 3957.
Z. Cserhalmi, A. Sass-Kiss, M. Tóth-Markus, and N. Lechner, "Study of pulsed electric field treated citrus juices," InnovaI've Food Science & Emerging Technologies, vol. 7, pp. 49-54, 2006.
Arshad, Rai Naveed, Zolkafle B. Buntat, Ali M. Dastgheib, Yanti MM Jusoh, Abdullah Munir, Rana Muhammad Aadil, and Mohd Hafizi Ahmad. "Continuous flow treatment chamber for liquid food processing through pulsed electric field." Journal of Computational and Theoretical Nanoscience 17, no. 2-3 (2020): 1492-1498.
J. Mosqueda-Melgar, P. Elez-Martínez, R. M. Raybaudi-Massilia, and O. Martin-Belloso, "Effects of pulsed electric fields on pathogenic microorganisms of major concern in fluid foods: a review," Critical Reviews in Food Science and Nutrition, vol. 48, pp. 747-759, 2008.
Continuous Flow Treatment Chamber for Liquid Food Processing Through Pulsed Electric Field, RN Arshad, ZB Buntat, AM Dastgheib, YMM Jusoh, A Munir, RM Aadil Journal of Computational and Theoretical Nanoscience 17 (2-3), 1492-1498