محتوای غذایی و معدنی قارچ Inocutis levis و فعالیت آنتی‌اکسیدانی میسلیوم تخمیر‌شده آن

نویسندگان
1 سازمان پژوهشهای علمی و صنعتی ایران
2 پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهید بهشتی
چکیده
قارچ پلی­پور نارون با نام علمی Inocutis levis یک بازیدیومیست ماکروسکوپی متعلق به خانواده Hymenochaetaceae است. بسیاری از اعضای این خانواده به دلیل خواص دارویی و تغذیه­ای مورد ‌توجه محققان بوده­اند. بررسی­های اخیر، برخی خواص زیست­فعال اندام بارده قارچ I. levis را نشان داده است. این تحقیق، برای اولین بار ویژگی­های تغذیه‌ای و معدنی Inocutis levis و خاصیت آنتی‌اکسیدانی عصاره میسلیومی این قارچ را بررسی می­کند. ترکیبات غذایی طبق روش AOAC و محتوای معدنی با استفاده از ICP-MS تعیین شد. کشت میسلیومی ابتدا در محیط کشت PDA و سپس در PDB صورت گرفت. مقایسه خاصیت آنتی­اکسیدانی عصاره­های اندام بارده و میسلیوم I. levis با سنجش­های ABTS و DPPH انجام شد. بر اساس نتایج، این قارچ دارای 14.2 درصد پروتئین، 73.7 درصد کربوهیدرات (شامل 59.7 درصد فیبر) و همچنین مقادیر قابل‌توجهی از عناصر معدنی (11.6 درصد) مانند پتاسیم، فسفر، منیزیم و آهن است. غلظت سرب و کادمیوم در I. levis در سطح ایمن است، اما مقادیر جیوه و آرسنیک بر اساس شاخص خطر سلامت (HRI) از سطح ایمن فراتر می‌رود. نتایج نشان میدهد اگرچه عصاره­های اندام باردهI. levis قدرت بالاتری در مهار رادیکال­های آزاد دارد، اما به دلیل بازده قابل‌توجه عصاره میسلیومی و همچنین سهولت کشت، می‌توان میسلیوم کشت‌شده این قارچ­ را به‌عنوان منبعی بالقوه از ترکیبات فعال زیستی در نظر گرفت. برای استفاده از این گونه قارچی در صنایع غذایی و دارویی بررسی دقیق­تر ترکیبات این قارچ پیشنهاد می­گردد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Nutritional and mineral contents of Inocutis levis and antioxidant activity of its fermented mycelia

نویسندگان English

Mohaddeseh Moghaddam 1
Masoomeh Ghobad-Nejhad 1
Mahdi Moridi Farimani 2
1 Iranian Research Organization for Science and Technology
2 Medicinal Plants and Drug Research Institute, Shahid Beheshti University
چکیده English

The Elm polypore mushroom Inocutis levis is a macroscopic basidiomycete belonging to the Hymenochaetaceae family. Many members of this family have been of interest to researchers due to their medicinal and nutritional properties. Recent investigations have shown some bioactive properties of the fruiting body of I. levis. In this research, the nutritional and mineral composition of I. levis and the antioxidant activity of its mycelial extract have been investigated for the first time. Nutritional composition was determined according to AOAC method and mineral content was determined using ICP-MS. Mycelium cultivation was performed in PDA and then in PDB medium. Antioxidant activity of the fruiting body and mycelial extracts was evaluated via ABTS and DPPH assays. According to the results, Inocutis levis contains 14.2% protein, 73.7% carbohydrates (including 59.7% fiber), and a significant amount of minerals (11.6%) including potassium, phosphorus, magnesium, and iron. The concentration of lead and cadmium in I. levis is at the safe level, but the Health Risk Index (HRI) values of mercury and arsenic exceed the safe level. Although I. levis fruiting body extracts had a higher free radicals inhibitor activity, due to the significant yield of the mycelium extract and also the ease of cultivation, the cultured mycelium of this mushroom can be considered as a potential source of bioactive compounds. To apply this mushroom in food and pharmaceutical industries, a deeper investigation of the compounds of I. levis is suggested.

کلیدواژه‌ها English

polypore fungi
mycelium cultivation
Antioxidant
Nutritional Value
1- Thakur, M. (2020). Advances in mushroom production: Key to food, nutritional and employment security: A review. Indian Phytopathology, 73, 377-395.
2- Runnel, K., Miettinen, O., & Lõhmus, A. (2021). Polypore fungi as a flagship group to indicate changes in biodiversity–a test case from Estonia. IMA fungus, 12, 1-31.
3- Grienke, U., Zöll, M., Peintner, U., & Rollinger, J. M. (2014). European medicinal polypores–A modern view on traditional uses. Journal of Ethnopharmacology, 154(3), 564-583..
4- Wagner, T., & Fischer, M. (2002). Proceedings towards a natural classification of the worldwide taxa Phellinus s.l. and Inonotus s.l., and phylogenetic relationships of allied genera. Mycologia, 94(6), 998-1016.
5- Larsson, K.-H., Parmasto, E., Fischer, M., Langer, E., Nakasone, K. K., & Redhead, S. A. (2006). Hymenochaetales: a molecular phylogeny for the hymenochaetoid clade. Mycologia, 98(6), 926-936.
6- Wu, F., Zhou, L.-W., Vlasák, J., & Dai, Y.-C. (2022). Global diversity and systematics of Hymenochaetaceae with poroid hymenophore. Fungal diversity, 113(1), 1-192.
7- Ehsanifard, Z., Mir-Mohammadrezaei, F., Safarzadeh, A., & Ghobad-Nejhad, M. (2017). Aqueous extract of Inocutis levis improves insulin resistance and glucose tolerance in high sucrose-fed Wistar rats. Journal of Herbmed Pharmacology, 6(4), 160-164.
8- Vinogradov, E., & Wasser, S. P. (2005). The structure of a polysaccharide isolated from Inonotus levis P. Karst. mushroom (Heterobasidiomycetes. Carbohydrate Research, 340(18), 2821-2825.
9- Ehsanifard, Z., Mir Mohammadrezaei, F., Ghobad-Nejhad, M., & Safarzade, A. (2019). The effect of aqueous extract of Inocutis levis on liver histopathology and hypertriglyceridemia in high sucrose-fed Wistar rats. Journal of Medicinal Plants, 18(70), 181-187.
10- Chaharmiri Dokhaharani, S., Ghobad-Nejhad, M., Moghimi, H., Farazmand, A., & Rahmani, H. (2020). Investigating antibacterial and antioxidant activity of Inocutis levis extracts and evaluating its phenolic compounds. Biological Journal of Microorganisms, 9(35), 1-16.
11- Ghobad-Nejhad, M., & Kotiranta, H. (2008). The genus Inonotus sensu lato in Iran, with keys to Inocutis and Mensularia worldwide. Annales Botanici Fennici, 45(6), 465-476.
12- Stielow, J. B., Levesque, C. A., Seifert, K. A., Meyer, W., Irinyi, L., Smits, D., . . . Chaduli, D. (2015). One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia-Molecular Phylogeny and Evolution of Fungi, 35(1), 242-263.
13- Ghobad-Nejhad, M., Asgari, B., & Chaharmiri Dokhaharani, S. (2017). Notes on some endophytic fungi isolated from Quercus brantii in Dena, Kohgiluyeh and Boyer-Ahmad province. Mycologia Iranica, 4(1), 1-12.
14- Cunniff, P. Association of Official Analytical Chemists (1995) Official methods of analysis of AOAC international. Washington, DC: Association of Official Analytical Chemists.
15- Moghaddam, M., Ghobad-Nejhad, M., Stegemann, T., Çiçek, S. S., Zidorn, C., & Javanmard, M. (2023). Nutritional composition and odor-Contributing volatile compounds of the edible mushroom Cantharellus alborufescens. Molecules, 28(22), 7516.
16- Liu, S., Fu, Y., Shi, M., Wang, H., & Guo, J. (2021). Pollution level and risk assessment of lead, cadmium, mercury, and arsenic in edible mushrooms from Jilin Province, China. Journal of Food Science, 86(8), 3374-3383.
17- Širić, I., Kumar, P., Eid, E. M., Bachheti, A., Kos, I., Bedeković, D., . . . Humar, M. (2022). Occurrence and health risk assessment of Ccadmium cccumulation in three Tricholoma mushroom species collected from wild habitats of central and coastal Croatia. Journal of Fungi, 8(7), 685.
18- Nag, R., & Cummins, E. (2022). Human health risk assessment of lead (Pb) through the environmental-food pathway. Science of the Total Environment, 810, 151168.
19- Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237.
20- Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. sci. technol, 26(2), 211-219.
21- Xu, B. J., & Chang, S. (2007). A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of Food Science, 72(2), S159-S166.
22- Cheung, P. C. (2010). The nutritional and health benefits of mushrooms. Nutrition Bulletin, 35(4), 292-299.
23- Ulziijargal, E., & Mau, J.-L. (2011). Nutrient compositions of culinary-medicinal mushroom fruiting bodies and mycelia. International journal of medicinal mushrooms, 13.
24- Xue, Y.-T., Ren, G.-Q., Liu, Y.-X., Jiang, X.-Y., Zhang, C.-Y., & Wang, Q. (2023). Fermentation process optimization and efficacy evaluation of functional yoghurt supplemented with Inonotus obliquus polysaccharide. Journal of Food Measurement and Characterization, 1-13.
25- Lin, P.-H., Huang, S.-Y., Mau, J.-L., Liou, B.-K., & Fang, T. J. (2010). A novel alcoholic beverage developed from shiitake stipe extract and cane sugar with various Saccharomyces strains. LWT-Food Science and Technology, 43(6), 971-976.
26- Moon, B., & Lo, Y. (2014). Conventional and novel applications of edible mushrooms in today's food industry. Journal of Food Processing and Preservation, 38(5), 2146-2153.
27- Yang, H., & Zhang, L. (2009). Changes in some components of soymilk during fermentation with the basidiomycete Ganoderma lucidum. Food Chemistry, 112(1), 1-5.
28- Vulin, M., Magušić, L., Metzger, A.-M., Muller, A., Drenjančević, I., Jukić, I., . . . Davidović Cvetko, E. (2022). Sodium-to-potassium ratio as an indicator of diet quality in healthy pregnant women. Nutrients, 14(23), 5052.
29- Khani, R., Moudi, M., & Khojeh, V. (2017). Contamination level, distribution and health risk assessment of heavy and toxic metallic and metalloid elements in a cultivated mushroom Pleurotus florida (Mont.) singer. Environmental Science and Pollution Research, 24, 4699-4708.
30- Kokkoris, V., Massas, I., Polemis, E., Koutrotsios, G., & Zervakis, G. I. (2019). Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece). Science of the Total Environment, 685, 280-296.
31- Chaharmiri-Dokhaharani, S., Ghobad-Nejhad, M., Moghimi, H., Norouzi, H., & Moghaddam, M. (2023). Bioactivity and chemical profiling of medicinal fungi Inonotus cuticularis and Inocutis levis (Hymenochaetaceae) using chromatography and mass spectrometry. Journal of Medicinal plants and By-product. doi: 10.22034/JMPB.2023.128804.
32- Angelini, P., Girometta, C., Tirillini, B., Moretti, S., Covino, S., Cipriani, M., . . . Savino, E. (2019). A comparative study of the antimicrobial and antioxidant activities of Inonotus hispidus fruit and their mycelia extracts. International Journal of Food Properties, 22(1), 768-783.
33- Souilem, F., Fernandes, Â., Calhelha, R. C., Barreira, J. C., Barros, L., Skhiri, F., . . . Ferreira, I. C. (2017). Wild mushrooms and their mycelia as sources of bioactive compounds: Antioxidant, anti-inflammatory and cytotoxic properties. Food Chemistry, 230, 40-48.
34- Tanavar, H., Barzegar, H., Alizadeh Behbahani, B., & Mehrnia, M. A. (2021). Investigation of the chemical properties of Mentha pulegium essential oil and its application in Ocimum basilicum seed mucilage edible coating for extending the quality and shelf life of veal stored in refrigerator (4 C). Food Science & Nutrition, 9(10), 5600-5615.
35- Yeganegi, M., Yazdi, F. T., Mortazavi, S. A., Asili, J., Behbahani, B. A., & Beigbabaei, A. (2018). Equisetum telmateia extracts: Chemical compositions, antioxidant activity and antimicrobial effect on the growth of some pathogenic strain causing poisoning and infection. Microbial Pathogenesis, 116, 62-67.
36- Noshad, M., Alizadeh Behbahani, B., Jooyandeh, H., Rahmati‐Joneidabad, M., Hemmati Kaykha, M. E., & Ghodsi Sheikhjan, M. (2021). Utilization of Plantago major seed mucilage containing Citrus limon essential oil as an edible coating to improve shelf‐life of buffalo meat under refrigeration conditions. Food Science & Nutrition, 9(3), 1625-1639.