ریز پوشانی لاکتوباسیلوس اسیدوفیلوس توسط صمغ آمونیاکوم غنی شده با نانوسلنیوم: بررسی میزان زنده مانی در شرایط شبیه سازی شده دستگاه گوارش و دوره نگهداری

نویسندگان
1 استاد گروه علوم و صنایع غذایی، دانشکده تغذیه و علوم غذایی، دانشگاه علوم پزشکی تبریز، تبریز، ایران
2 استادیار گروه علوم و صنایع غذایی، دانشکده علوم پزشکی مراغه، مراغه، ایران
چکیده
افزایش تقاضا برای هیدروکلوئیدهای با کارآیی ویژه، محققان را برای معرفی منابع جدید هیدروکلوئیدی علاقه مند کرده است. یکی از روش­های افزایش زنده­مانی پروبیوتیک­ها در شرایط استرس­زا ریز پوشانی می باشد، تا بتوان این باکتری­ها را به تعداد کافی به بدن رساند و از اثرات سلامت بخش آنها استفاده کرد. هدف از این مطالعه بررسی امکان سنجی ریزپوشانی پروبیوتیک ل. اسیدوفیلوس توسط صمغ آمونیاکوم و غنی کردن آن با استفاده از نانوسلنیوم و تعیین میزان زنده مانی آن در شرایط استرس زا می باشد. صمغ آمونیاکوم با استفاده از حلال و سپس ترسیب توسط الکل از موسیلاژ حاصل از گیاه ­Dorema Ammonacum استخراج شد. محلول­های 1، 5 و 10­% وزنی- حجمی از صمغ آمونیاکوم تهیه شد و سپس نانو ذرات سلنیوم سنتز شده در غلظت 5/1 درصد و سلول باکتری با میانگین تعداد log cfu 1011 × 85/6، به سوسپانسیون اضافه شدند. نتایج نشان داد که با افزایش غلظت صمغ بازده انکپسولاسیون به صورت معنی­داری از 66% به 81% افزایش پیدا کرد. نرخ زنده­مانی برای غلظت­های 1­%، 5­% و 10­% صمغ آمونیاکوم در شرایط یخچالی به ترتیب 43/62%، 37/72­% و 83/81­% بود. در شرایط شبیه سازی شده معده در سطوح pH مورد استفاده در این مطالعه در غلظت­های 5­% و 10­% از صمغ آمونیاکوم شمارش سلول­های زنده پس از 3 ساعت انکوباسیون بالاتر از log cfu g-1 7 باقی ماند. پس از 6 ساعت انکوباسیون در g L-1 10 محلول صفرایی سلول های آزاد افت log cfu g-1 93/5 را نشان دادند، در حالی که برای سلول­های ریزپوشانی شده در غلظت­های 1 %، 5 % و10 % به ترتیب تنها log cfu g-1 93/3، log cfu g-1 15/3 و log cfu g-1 9/1بود. نتایج نشان داد صمغ آمونیاکوم خواص انکپسوله کنندگی بسیار خوبی دارد که می­توان از آن در بسیاری از فرمولاسیون­های غذایی با این اهداف مورد استفاده قرار داد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Microencapsulation of Lactobacillus acidophilus by ammoniacum gum enriched with nanoselenium : investigating the survival rate in simulated gastrointestinal tract and storage period

نویسندگان English

Aziz Homayouni Rad 1
Behzad Ebrahimi 2
1 Professor, Departmentof Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
2 Assistant Professor, Department of Food Science and Technology, Maragheh University of Medical Sciences, Maragheh, Iran
چکیده English

The escalating demand for hydrocolloids exhibiting exceptional performance has encouraged the interest of researchers in identifying novel sources of these hydrocolloids. Encapsulation has emerged as a strategy to boost the survivability of probiotics in harsh environmental conditions, enabling these beneficial bacteria to be transported to the body in sufficient quantities to leverage their health-promoting effects. This study aimed to explore the viability of microencapsulating probiotic L. acidophilus using ammoniacum gum (AMG), enhancing it with nanoselenium, and ascertaining its survival rate in stressful conditions. AMG, extracted from the mucilage of the Dorema Ammonacum plant using solvent and alcohol precipitation, was employed in the study. Solutions comprising 1%, 5%, and 10% weight-volume of AMG were prepared, followed by the synthesis of selenium nanoparticles at a concentration of 1.5%. Bacterial cells with an average count of 6.85×1011 log CFU were then introduced into the suspension. Observations revealed a substantial increase in encapsulation efficiency, rising from 66% to 81% with the escalation of gum concentration. The survival rates under refrigerated conditions for 1%, 5%, and 10% concentrations of AMG were recorded at 62.43%, 72.37%, and 81.83%, respectively. In simulated stomach conditions, at the pH levels applied in this study, concentrations of 5% and 10% of AMG exhibited sustained live cell counts exceeding 7 log cfu g-1 after 3 hours of incubation. Additionally, after a 6-hour incubation in a 10 g L-1 bile solution, free cells exhibited a reduction of 5.93 log cfu g-1, whereas micro-encapsulated cells at concentrations of 1%, 5%, and 10% demonstrated reductions of only 3.93 log cfu g-1, 3.15 log cfu g-1, and 1.9 log cfu g-1, respectively. These findings underscore the excellent encapsulation properties of AMG, locating it as a promising candidate for integration into numerous food formulations with similar objectives.

کلیدواژه‌ها English

nano selenium
amuniacum gum
microincapsulation
1. Yoha KS, Moses JA, Anandharamakrishnan C (2023) Effect of different drying methods on the functional properties of probiotics encapsulated using prebiotic substances. Appl Microbiol Biotechnol 107:1575–1588
2. Ebrahimi B, Ghanbarzadeh B, Rad AH, Hemmati S, Moludi J, Arab K, Karimi S (2021) Structural and physicochemical characterization of a novel water ‑ soluble polysaccharide isolated from Dorema. Polym Bull. https://doi.org/10.1007/s00289-021-03952-y
3. Barchielli G, Capperucci A, Tanini D (2022) The role of selenium in pathologies: An updated review. Antioxidants 11:251
4. Xu C, Ban Q, Wang W, Hou J, Jiang Z (2022) Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. J Control Release 349:184–205
5. Zhang R, Belwal T, Li L, Lin X, Xu Y, Luo Z (2020) Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review. Carbohydr Polym 242:116388
6. Zibaei R, Ebrahimi B, Rouhi M, Hashami Z, Roshandel Z, Hasanvand S, de Toledo Guimarães J, Mohammadi R (2023) Development of packaging based on PLA/POE/SeNPs nanocomposites by blown film extrusion method: Physicochemical, structural, morphological and antioxidant properties. Food Packag Shelf Life 38:101104
7. Ebrahimi B, Mohammadi R, Rouhi M, Mortazavian AM, Shojaee-Aliabadi S, Koushki MR (2018) Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality parameters. LWT - Food Sci Technol 87:54–60
8. Suryabhan P, Lohith K, Anu-Appaiah KA (2019) Sucrose and sorbitol supplementation on maltodextrin encapsulation enhance the potential probiotic yeast survival by spray drying. Lwt 107:243–248
9. Chávarri M, Marañón I, Ares R, Ibáñez FC, Marzo F, del Carmen Villarán M (2010) Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int J Food Microbiol 142:185–189
10. Afzaal M, Khan AU, Saeed F, Ahmed A, Ahmad MH, Maan AA, Tufail T, Anjum FM, Hussain S (2019) Functional exploration of free and encapsulated probiotic bacteria in yogurt and simulated gastrointestinal conditions. Food Sci Nutr 7:3931–3940
11. Hashami Z, Sadeghi E, Ebrahimi B, Zibaei R, Hasanvand S, Roshandel Z, de Toledo Guimarães J, Mohammadi R (2023) Microencapsulation of Lactobacillus casei in psyllium–gelatin gum enriched with selenium: effects on bacterial survival under gastrointestinal and storage conditions. Int J Food Sci Technol 58:3502–3510
12. Guerin J, Petit J, Burgain J, Borges F, Bhandari B, Perroud C, Desobry S, Scher J, Gaiani C (2017) Lactobacillus rhamnosus GG encapsulation by spray-drying: Milk proteins clotting control to produce innovative matrices. J Food Eng 193:10–19
13. Arepally D, Goswami TK (2019) Effect of inlet air temperature and gum Arabic concentration on encapsulation of probiotics by spray drying. Lwt 99:583–593
14. Poddar D, Das S, Jones G, Palmer J, Jameson GB, Haverkamp RG, Singh H (2014) Stability of probiotic Lactobacillus paracasei during storage as affected by the drying method. Int Dairy J 39:1–7
15. Guerin J, Petit J, Burgain J, Borges F, Bhandari B, Perroud C, Desobry S, Scher J, Gaiani C (2017) Lactobacillus rhamnosus GG encapsulation by spray-drying: Milk proteins clotting control to produce innovative matrices. J Food Eng 193:10–19
16. Tao T, Ding Z, Hou D, Prakash S, Zhao Y, Fan Z, Zhang D, Wang Z, Liu M, Han J (2019) Influence of polysaccharide as co-encapsulant on powder characteristics , survival and viability of microencapsulated Lactobacillus paracasei Lpc-37 by spray drying. J Food Eng 252:10–17
17. Rajam R, Anandharamakrishnan C (2015) Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. LWT-Food Sci Technol 60:773–780
18. Paéz R, Lavari L, Vinderola G, Audero G, Cuatrin A, Zaritzky N, Reinheimer J (2012) Effect of heat treatment and spray drying on lactobacilli viability and resistance to simulated gastrointestinal digestion. Food Res Int 48:748–754
19. Huang S, Vignolles M-L, Chen XD, Le Loir Y, Jan G, Schuck P, Jeantet R (2017) Spray drying of probiotics and other food-grade bacteria: A review. Trends food Sci Technol 63:1–17
20. Garvey CJ, Lenné T, Koster KL, Kent B, Bryant G (2013) Phospholipid membrane protection by sugar molecules during dehydration—insights into molecular mechanisms using scattering techniques. Int J Mol Sci 14:8148–8163
21. Krisch J, Kerekes EB, Takó M, Vágvölgyi C (2020) Application of immobilized cells and enzymes in the food industry. In: Microb. Ferment. Enzym. Technol. CRC Press, pp 115–127
22. Broeckx G, Vandenheuvel D, Henkens T, Kiekens S, van den Broek MFL, Lebeer S, Kiekens F (2017) Enhancing the viability of Lactobacillus rhamnosus GG after spray drying and during storage. Int J Pharm 534:35–41
23. Reyes V, Chotiko A, Chouljenko A, Sathivel S (2018) Viability of Lactobacillus acidophilus NRRL B-4495 encapsulated with high maize starch, maltodextrin, and gum arabic. LWT - Food Sci Technol. https://doi.org/10.1016/j.lwt.2018.06.017
24. Pham M, Lemberg DA, Day AS (2008) Probiotics: sorting the evidence from the myths. Med J Aust 188:304–308
25. Dehkordi SS, Alemzadeh I, Vaziri AS, Vossoughi A (2020) Optimization of alginate-whey protein isolate microcapsules for survivability and release behavior of probiotic bacteria. Appl Biochem Biotechnol 190:182–196
26. Dimitrellou D, Kandylis P, Petrovi T, Levi S (2016) Survival of spray dried microencapsulated Lactobacillus casei ATCC 393 in simulated gastrointestinal conditions and fermented milk. https://doi.org/10.1016/j.lwt.2016.03.007
27. De Castro-Cislaghi FP, Carina Dos Reis ES, Fritzen-Freire CB, Lorenz JG, Sant’Anna ES (2012) Bifidobacterium Bb-12 microencapsulated by spray drying with whey: Survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability during storage. J Food Eng 113:186–193