بررسی تاثیر نانولیپوزوم‌های حاوی آسکوربیل پالمیتات بر پایداری اکسایشی روغن سویا

نویسندگان
1 گروه کشاورزی، مرکز آموزش عالی میناب، دانشگاه هرمزگان، بندرعباس، ایران.
2 عضو هیات علمی گروه مهندسی کشاورزی، دانشگاه فنی و حرفه‌ای، ایران
3 شرکت پنبه و دانه‌های روغنی خراسان، نیشابور، ایران
چکیده
آسکوربیل پالمیتات یک استر محلول در چربی ویتامین C و اسید پالمتیک می‌باشد که از این ترکیب برای افزایش پایداری اکسایشی روغن‌ها استفاده می‌شود و در این مطالعه به‌منظور افزایش پایداری آن نسبت به شرایط محیطی حرارت، رطوبت، اکسایش و نور از فناوری‌های درون پوشانی (نانولیپوزوم) در روغن سویا پالایش شده فاقد آنتی‌اکسیدان استفاده گردید. در این مطالعه از 5 غلظت نانولیپوزوم حاوی آسکوربیل پالمیتات (0، 50، 100، 200 و 500 پی‌پی‌ام) برای افزایش پایداری اکسایشی روغن سویا نگهداری شده در دمای 63 درجه سانتی‌گراد (آون الکتریکی) برای مدت زمان 16 روز استفاده گردید و آزمون‌هایی از قبیل اسیدیته، پراکسید، دی‌ان مزدوج، آنیزیدین و پایداری اکسایشی روی آن روغن‌ها انجام گرفت. نتایج نشان داد که با افزایش زمان نگهداری میزان اسیدیته، دی‌ان مزدوج و آنیزیدین افزایش یافت ولی با افزایش غلظت نانولیپوزوم حاوی آسکوربیل پالمیتات روند افزایش این ویژگی‌ها از شدت کمتری برخوردار بود. با افزایش زمان نگهداری تا روز 12‌ام، میزان پراکسید نمونه‌ها افزایش و سپس کاهش یافت و با افزایش غلظت آنتی‌اکسیدان میزان پراکسید نمونه‌ها کاهش یافت. از طرفی نشان داده شد که افزایش غلظت نانولیپوزوم از صفر تا 500 پی‌پی‌ام در روغن سویا، میزان پایداری اکسایشی را در حدود 96 درصد افزایش می‌دهد. در نهایت مشخص گردید که افزایش غلظت نانولیپوزوم‌های حاوی آسکوربیل پالمیتات در روغن سویا، اکسیداسیون روغن را کاهش می‌دهد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the effect of nanoliposomes containing ascorbyl palmitate on the oxidative stability of soybean oil

نویسندگان English

Hamid Bakhshabadi 1
Mohammad Ganje 1
Zinab Rostami 2
Ali Mansournia 3
Seid Mehdi Hosseini 3
1 Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
2 2-Faculty member of Agricultural Engineering Department, Technical and Vocational University, Iran
3 Khorasan Cotton and Oilseeds Company, Neyshabour, Iran.
چکیده English

Ascorbyl palmitate is a fat-soluble ester of vitamin C and palmitic acid, which is used to increase the oxidative stability of oils. In this study, in order to increase its stability to the environmental conditions of heat, humidity, oxidation and light, encapsulation technologies (nanoliposome) were used in refined soybean oil without antioxidants. In this regard, in this study, 5 concentrations of nanoliposomes containing ascorbyl palmitate (0, 50, 100, 200 and 500 ppm) were used to increase the oxidative stability of soybean oil stored at 63°C (electric oven) for a period of 16 days. Tests such as acidity, peroxide, conjugated dienes, anisidine and oxidative stability were performed on those oils. The results showed that acidity, conjugated dienes and anisidine increased with increasing storage time, but with increasing concentration of nanoliposome containing ascorbyl palmitate, the increase in these characteristics was less intense. By increasing the storage time until the 12th day, the amount of peroxide in the samples increased and then decreased, and with the increase in the antioxidant concentration, the amount of peroxide in the samples decreased. On the other hand, it was shown that increasing the concentration of nanoliposome from zero to 500 ppm in soybean oil increases the oxidative stability by about 96%. Finally, it was found that increasing the concentration of nanoliposomes containing ascorbyl palmitate in soybean oil reduces oil oxidation.

کلیدواژه‌ها English

Ascorbyl Palmitate
Oxidative stability
Soybean oil
Nanoliposome
1-Beddows, C.G., Charanjit Jagait, C. and Michael Kelly, M.J. 2001. Effect of ascorbyl palmitate on the preservation of α-tocopherol in sunflower oil, alone and with herbs and spices. Food Chemistry. 73(3): 255-261.
2- Hosseini, S.M., Bojmehrani, A., Zare, E., Zare, Z., Hosseini, S. M. and Bakhshabadi, H. 2021. Optimization of antioxidant extraction process from corn meal using pulsed electric field‐subcritical water. Journal of food processing and preservation. 1-10.
3- Dowlatabadi, Z., Elhamirad, A.H., AkhlaghiFeizabad, S.H., Farzaneh, V. and Bakhshabadi, H. 2022. Optimization of pulsed electric field assisted extraction of lycopene and phenolic compounds from tomato waste. Journal of food science and technology. 19 (125): 109-119. (In Persian)
4- Shahidi, F. and Wanasundara, P.K.J.P.D. 1992. Phenolic antioxidant. Critical Reviews in Food Science and Nutritions. 32: 67-103.
5- Tayebi Rad, F., Bakhshabadi, H. and Rashidzadeh, S. 2021. Optimization of anthocyanin's and bioactive compounds extraction from seedless barberry fruit with pulsed electric field. Journal of food science and technology. 18 (114): 305-317. (In Persian)
6- Gordon, M.H. and kourimska, L.1995. The effects of antioxidants on changes in oils during heating and deep- frying. Journal of the Science of Food and Agriculture. 68: 347-353.
7- Arabsorkhi, B., Pourabdollah, E. and Mashadi, M. 2023. Investigating the effect of replacing the antioxidants Ascorbyl palmitate and tocopherol instead of TBHQ on the shelf life of sunflower oil using temperature accelerated method. Food Chemistry Advances. 2: 100246. https://doi.org/10.1016/j.focha.2023.100246.
8- Kargar, M., Handali, S., Moghimipour, E., Ramezani, Z. 2016. 'Preparation and Characterization of Escherichia coli Liposomes as a New Drug Delivery System to Colon Cancer'. Journal of Microbial Biology. 5(17): 87-96.
9- Bojmehrani, A., Hajirostamloo, B., Vazifedoost, M., Didar, Z. and Jafari, S.M. 2022. The effect of nanoliposomes containing antioxidant extract of grape pomace on oxidation parameters of soybean oil. Journal of Food Science and Technology. 19 (125): 171-182. (In Persian).
10- Ahmadi, E. 2022. Optimization of antioxidative extract of the white tea in ultrasound assisted solvent extraction, micropropagation by liposome tecnigue and application for oxidative stabilizing of edible oils. Ph.D” Thesis on Food Science and Technology. Sabzevar Branch. Sabzevar, Iran. 191 p.
11- AOCS. 1993. Official Methods and Recommended Practices of the American Oil Chemists’ Society, AOCS Press, Champaign, IL. 762p.
12- Saguy, I.S., Shani ,A., Weinberg, P. and Garti, N. 1996. Utilization of jojoba oil for deep-fat frying of food. Journal of Lebensm wiss u-Technol. 29: 573-577.
13- Keene, K.A., Ruddy, R.M. and Fhaner, M.J. 2019. Investigating the Relationship between Antioxidants and Fatty Acid Degradation Using a Combination Approach of GC-FID and Square-Wave Voltammetry. ACS Omega.4 (1): 983-991.
14- Nejati-Rad, A., Moghimi, M., Rezaei, R. and Bakhshabadi, H. 2020. Effect of different pre-treatments on antioxidant and some chemical compounds of extract of hawthorn fruit. Journal of food science and technology. 17 (105): 113-122. (In Persian).
15- Yamani, M.E., Sakar, E.H., Boussakouran, A. and Yahia Rharrabti, Y. 2022. Effect of storage time and conditions on the quality characteristics of ‘Moroccan Picholine’ olive oil. Biocatalysis and Agricultural Biotechnology.Volume 39. 102244. ISSN 1878-8181. https://doi.org/10.1016/j.bcab.2021.102244.
16- Liu, K., Liu, Y. and Chen, F. 2019. Effect of storage temperature on lipid oxidation and changes in nutrient contents in peanuts. Food Science and Nutrition. 7: 2280–2290.
17- - Vidya, S.R.G. and Srikar, L.N. 1996. Effect of preprocess ice storage on the lipidchenges of japanese threadfin bream (Nemipterus japonicus) mince during frozen. Asian Fisher Science. 9: 109-114.
18- Padehban, L., Ansari, S. and Koshani, R. 2018. Effect of packaging method, temperature and storage period on physicochemical and sensory properties of wild almond kernel. Journal of Food Science and Technology. 55(9):3408-3416.
19- Ettalibi, F., Antari, A.E., Gadhi, C. and Harrak, H. 2020. Oxidative Stability at Different Storage Conditions and Adulteration Detection of Prickly Pear Seeds Oil. Journal of Food Quality, vol. 2020, Article ID 8837090, 12 pages, 2020. https://doi.org/10.1155/2020/8837090.
20- Barros, L., Heleno, S.A., Carvalho, A.M.and Ferreira, I.C.F.R. 2009. Systematic evaluation of the antioxidant potential of different parts of Foeniculum vulgare Mill from Portugal. Food and Chemical Toxicology. 47: 2458–2464.
21- Shearer, C. N. 2010. Accelerated shelf life determination of antioxidant stabilized high oleic sunflower and canola oils in plastic bottles. Department of Nutrition, Dietetics, and Food Science.
22- Wazir, H., Chay, S.Y., Zarei, M., Hussin, F.S., Mustapha, N.A., Wan Ibadullah, W.Z. and Saari, N. 2019. Effects of Storage Time and Temperature on Lipid Oxidation and Protein Co-Oxidation of Low-Moisture Shredded Meat Products. Antioxidants. 8, 486. https://doi.org/10.3390/antiox8100486
23- Jafarpour, D., Hashemi, S.M.B. and Ghaedi, A. 2021. Study the antioxidant properties of different parts of saffron extract and their application in cream. FSCT. 18 (113): 289-299. (In Persian).
24- Farahmandfar, R., Asnaashari, M. and Sayyad, R. 2015. Comparison antioxidant activity of Tarom Mahali rice bran extracted from different extraction methods and its effect on canola oil stabilization. Journal of Food Science and Technology. 52(10): 6385-6394.
25- Guillén, M.D. and Goicoechea, E. 2008. Toxic oxygenated alpha, beta-unsaturated aldehydes and their study in foods: A review. Critical reviews in food science and nutrition. 48:119–136.
26- pokorny,J., Yanishlieva, N. and Gordon, M. 2001. Antioxidants in Food. CRC Press.380p
27-Okhli, S., Mirzaei, H.O. and Hosseini, S.E. 2020. Antioxidant activity of citron peel (Citrus medica L.) essential oil and extract on stabilization of sunflower oil. OCL - Oilseeds and fats, Crops and Lipids. 27 (32): 1-7.
28- Holser, R.A. 2003. Properties of refined milkweed press oil. Industrial crops and products. 18: 133-138.
29- Matthaus, B. 2006. Utilization of high – oleic rapeseed oil for deep-fat frying of French fries compared to other commonly used edible oils. Europian Journal of Lipid Science and Technology. 108: 200-211.