درون پوشانی ترکیبات فنولی آب ریواس و تاثیر آن ها بر خواص آب انار

نویسندگان
1 دانشجوی کارشناسی ارشد علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، ایران
2 دانشیار گروه علوم و صنایع غذایی، تکنولوژی مواد غذایی، دانشکده مهندسی کشاورزی، دانشگاه صنعتی شاهرود، شاهرود، ایران
3 دانشیار، تکنولوژی موادغذایی، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، ایران
چکیده
هدف از این پژوهش درون پوشانی ترکیبات فنولی آب ساقه ریواس با کیتوزان و ایزوله پروتئین سویا و تاثیر آن ها بر خواص آب انار است. به این منظور ترکیبات فنولی آب ساقه ریواس توسط متانول استخراج و با روش نانوامولسیون با کیتوزان و ایزوله پروتئین سویا درون پوشانی شد و در نهایت از میکروکپسول ها و نانوکپسول های حاصل برای غنی سازی نمونه های آب انار استفاده شد. بیشترین درصد بازده درون پوشانی ترکیبات فنولی با ایزوله پروتئین سویا (26/45 درصد) بود. نتایج تصاویر SEM نشان داد ذرات به صورت نسبتا کروی و با سطح نسبتا صافی تشکیل شده اند، همچنین نانوکپسول های کیتوزان با اندازه متوسط 4/281 نانومتر و میکروکپسول های ایزوله پروتئین سویا با اندازه متوسط 33/22 میکرومتر تشکیل شده بودند. نتایج بررسی pH نشان داد نمونه های غنی شده با نانوکپسول های کیتوزان و میکروکپسول های ایزوله پروتئین سویا به ترتیب کاهش pH بیشتر و کمتری نسبت به نمونه های شاهد در طی دوره نگهداری نشان دادند. بررسی مهار رادیکال DPPH نشان داد غنی سازی آب انار با میکروکپسول کیتوزان تا 3 ماه نگهداری باعث افزایش فعالیت آنتی اکسیدانی نمونه ها شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Microencapsulation of phenolic compounds of rhubarb's juice and their effects on the properties of pomegranate's juice

نویسندگان English

Hossein Zareimanesh 1
Kambiz Jahanbin 2
Ahmad Rajaei Najafabadi 3
1 Master's student of Food Industry Science and Engineering, Faculty of Agriculture, Shahrood University of Technology, Iran
2 Associate Professor in Food Science and Technology, Department of Food Science and Technology, Faculty of Agricultural Engineering, Shahrood University of Technology, P.O. Box 361999-5161, Shahrood, Iran
3 Associate Professor, Food Technology, Faculty of Agriculture, Shahrood University of Technology, Iran
چکیده English

The purpose of this research is to encapsulate the phenolic compounds of rhubarb stem's juice with chitosan and soy protein isolate and checking their effects on the properties of pomegranate juice. For this purpose, the phenolic compounds of rhubarb stem's juice were extracted by methanol and encapsulated with chitosan and soy protein isolate by nanoemulsion method, and finally the resulting microcapsules and nanocapsules were used to enrich pomegranate juice samples. The highest percentage of encapsulation efficiency of phenolic compounds was with soy protein isolate (45.26%). The results of SEM images showed that the particles were relatively spherical and with a relatively smooth surface, also chitosan nanocapsules with an average size of 281.4 nm and soy protein isolate microcapsules with an average size of 22.33 µm were formed. The results of pH analysis showed that the samples enriched with chitosan nanocapsules and soy protein isolate microcapsules showed more and less pH decrease than the control samples during the storage period. The results of DPPH radical scavenging activity showed that the enrichment of pomegranate juice with chitosan nanocapsules increased the antioxidant activity of the samples for up to 3 months of storage.

کلیدواژه‌ها English

Encapsulation
phenolic compounds
Rheum's juice
Chitosan
Soy protein isolate
[1] Dimitreli, G., Petridis, D., Kapageridis, N., & Mixiou, M. (2019). Effect of pomegranate juice and fir honey addition on the rheological and sensory properties of kefir-type products differing in their fat content. LWT, 111, 799-808.
[2] Rinaldi, M., Caligiani, A., Borgese, R., Palla, G., Barbanti, D., & Massini, R. (2013). The effect of fruit processing and enzymatic treatments on pomegranate juice composition, antioxidant activity and polyphenols content. LWT - Food Science and Technology, 53(1), 355-359.
[3] Zhang, S., Hu, C., Guo, Y., Wang, X., & Meng, Y. (2021). Polyphenols in fermented apple juice: Beneficial effects on human health. Journal of Functional Foods, 76, 104294.
[4] Roasa, J., De Villa, R., Mine, Y., & Tsao, R. (2021). Phenolics of cereal, pulse and oilseed processing by-products and potential effects of solid-state fermentation on their bioaccessibility, bioavailability and health benefits: A review. Trends in Food Science & Technology, 116, 954-974.
[5] Mikołajczak, N., Tańska, M., & Ogrodowska, D. (2021). Phenolic compounds in plant oils: A review of composition, analytical methods, and effect on oxidative stability. Trends in Food Science & Technology, 113, 110-138.
[6] Carrasco-Sandoval, J., Aranda-Bustos, M., Henríquez-Aedo, K., López-Rubio, A., & Fabra, M. J. (2021). Bioaccessibility of different types of phenolic compounds co-encapsulated in alginate/chitosan-coated zein nanoparticles. LWT, 149, 112024.
[7] Das, P. R., Islam, M. T., Lee, S.-H., Lee, M.-K., Kim, J.-B., & Eun, J.-B. (2020). UPLC-DAD-QToF/MS analysis of green tea phenolic metabolites in their free, esterified, glycosylated, and cell wall-bound forms by ultra-sonication, agitation, and conventional extraction techniques. LWT, 127, 109440.
[8] Smaoui, S., Ben Hlima, H., Ben Braïek, O., Ennouri, K., Mellouli, L., & Mousavi Khaneghah, A. (2021). Recent advancements in encapsulation of bioactive compounds as a promising technique for meat preservation. Meat Science, 181, 108585.
[9] Marhamati, M., Ranjbar, G., & Rezaie, M. (2021). Effects of emulsifiers on the physicochemical stability of Oil-in-water Nanoemulsions: A critical review. Journal of Molecular Liquids, 340, 117218.
[10] Delshadi, R., Bahrami, A., Tafti, A. G., Barba, F. J., & Williams, L. L. (2020). Micro and nano-encapsulation of vegetable and essential oils to develop functional food products with improved nutritional profiles. Trends in Food Science & Technology, 104, 72-83.
[11] Miao, Q., Mi, Y., Cui, J., Zhang, J., Tan, W., Li, Q., & Guo, Z. (2021). Determination of chitosan content with Schiff base method and HPLC. International Journal of Biological Macromolecules, 182, 1537-1542.
[12] Shoueir, K. R., El-Desouky, N., Rashad, M. M., Ahmed, M. K., Janowska, I., & El-Kemary, M. (2021). Chitosan based-nanoparticles and nanocapsules: Overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting. International Journal of Biological Macromolecules, 167, 1176-1197.
[13] Kashyap, P. L., Xiang, X., & Heiden, P. (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 77, 36-51.
[14] Li, W., Wang, Y., Li, J., Jiao, Y., & Chen, J. (2019). Synergistic and competitive effects of monoglycerides on the encapsulation and interfacial shear rheological behavior of soy proteins. Food Hydrocolloids, 89, 631-636.
[15] Tian, H., Guo, G., Fu, X., Yao, Y., Yuan, L., & Xiang, A. (2018). Fabrication, properties and applications of soy-protein-based materials: A review. International Journal of Biological Macromolecules, 120, 475-490.
[16] Zhu, H., Mettu, S., Rahim, M. A., Cavalieri, F., & Ashokkumar, M. (2021). Insight into the structural, chemical and surface properties of proteins for the efficient ultrasound assisted co-encapsulation and delivery of micronutrients. Food Chemistry, 362, 130236.
[17] Akgün, D., Gültekin-Özgüven, M., Yücetepe, A., Altin, G., Gibis, M., Weiss, J., & Özçelik, B. (2020). Stirred-type yoghurt incorporated with sour cherry extract in chitosan-coated liposomes. Food Hydrocolloids, 101, 105532.
[18] Darrudi, R., Hassandokht, M. R., & Nazeri, V. (2015). Effects of moist stratification, GA3 and seed age on seed germination of Rheum khorasanicum B. Baradaran & A. Jafari. Journal of Applied Research on Medicinal and Aromatic Plants, 2(4), 168-173.
[19] Noori, S., Kiasat, A. R., Kolahi, M., Mirzajani, R., & Seyyed Nejad, S. M. (2022). Determination of secondary metabolites including curcumin in Rheum ribes L. and surveying of its antioxidant and anticancer activity. Journal of Saudi Chemical Society, 26(3), 101479.
[20] Öztürk, M., Aydoğmuş-Öztürk, F., Duru, M. E., & Topçu, G. (2007). Antioxidant activity of stem and root extracts of Rhubarb (Rheum ribes): An edible medicinal plant. Food Chemistry, 103(2), 623-630.
[21] Paul, A., & Radhakrishnan, M. (2020). Pomegranate seed oil in food industry: Extraction, characterization, and applications. Trends in Food Science & Technology, 105, 273-283.
[22] Kalaycıoğlu, Z., & Erim, F. B. (2017). Total phenolic contents, antioxidant activities, and bioactive ingredients of juices from pomegranate cultivars worldwide. Food Chemistry, 221, 496-507.
[23] Türkyılmaz, M., Hamzaoğlu, F., & Özkan, M. (2021). Effects of pasteurization and storage on turbidity and copigmentation in pomegranate juices clarified with various hydrocolloid combinations. Food Chemistry, 358, 129803.
[24] Putnik, P., Kresoja, Ž., Bosiljkov, T., Režek Jambrak, A., Barba, F. J., Lorenzo, J. M., Roohinejad, S., Granato, D., Žuntar, I., & Bursać Kovačević, D. (2019). Comparing the effects of thermal and non-thermal technologies on pomegranate juice quality: A review. Food Chemistry, 279, 150-161.
[25] Bhagat, B., & Chakraborty, S. (2022). Potential of pulsed light treatment to pasteurize pomegranate juice: Microbial safety, enzyme inactivation, and phytochemical retention. LWT, 159, 113215.
[26] Qadri Q, Fatahimi M and Alirezalu A, (2017) "Study of phytochemical and antioxidant characteristics of different rhubarb (Rheum ribes L.) genotypes collected from different regions of Iran" Journal of Food Industry Research, No. 4: 73-88
[27] Gaber Ahmed, G. H., Fernández-González, A., & Díaz García, M. E. (2020). Nano-encapsulation of grape and apple pomace phenolic extract in chitosan and soy protein via nanoemulsification. Food Hydrocolloids, 108, 105806.
[28] Kavousi, H. R., Fathi, M., & Goli, S. A. H. (2017). Stability enhancement of fish oil by its encapsulation using a novel hydrogel of cress seed mucilage/chitosan. International Journal of Food Properties, 20(sup2), 1890-1900.
[29] Oliveira, A., Pintado, M., & Almeida, D. P. F. (2012). Phytochemical composition and antioxidant activity of peach as affected by pasteurization and storage duration. LWT - Food Science and Technology, 49(2), 202-207.
[30] Aghdam, M. S., Luo, Z., Li, L., Jannatizadeh, A., Fard, J. R., & Pirzad, F. (2020). Melatonin treatment maintains nutraceutical properties of pomegranate fruits during cold storage. Food Chemistry, 303, 125385.
[31] Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161-166.
[32] Bursać Kovačević, D., Putnik, P., Dragović-Uzelac, V., Pedisić, S., Režek Jambrak, A., & Herceg, Z. (2016). Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry, 190, 317-323.
[33] Oliveira, W. Q. d., Wurlitzer, N. J., Araújo, A. W. d. O., Comunian, T. A., Bastos, M. d. S. R., Oliveira, A. L. d., Magalhães, H. C. R., Ribeiro, H. L., Figueiredo, R. W. d., & Sousa, P. H. M. d. (2020). Complex coacervates of cashew gum and gelatin as carriers of green coffee oil: The effect of microcapsule application on the rheological and sensorial quality of a fruit juice. Food Research International, 131, 109047.
[34] Shen, Y., Zhu, D., Xi, P., Cai, T., Cao, X., Liu, H., & Li, J. (2021). Effects of temperature-controlled ultrasound treatment on sensory properties, physical characteristics and antioxidant activity of cloudy apple juice. LWT, 142, 111030.
[35] Beaulieu, J. C., Lloyd, S. W., & Obando-Ulloa, J. M. (2020). Not-from-concentrate pilot plant ‘Wonderful’ cultivar pomegranate juice changes: Quality. Food Chemistry, 318, 126453.
[36] Ran, L., Chi, Y., Huang, Y., He, Q., & Ren, Y. (2020). Synergistic antioxidant effect of glutathione and edible phenolic acids and improvement of the activity protection by coencapsulation into chitosan-coated liposomes. LWT, 127, 109409.
[37] Delfanian, M., Razavi, S. M. A., Haddad Khodaparast, M. H., Esmaeilzadeh Kenari, R., & Golmohammadzadeh, S. (2018). Influence of main emulsion components on the physicochemical and functional properties of W/O/W nano-emulsion: Effect of polyphenols, Hi-Cap, basil seed gum, soy and whey protein isolates. Food Research International, 108, 136-143.
[38] Gopalakrishnan, L., Ramana, L. N., Sethuraman, S., & Krishnan, U. M. (2014). Ellagic acid encapsulated chitosan nanoparticles as anti-hemorrhagic agent. Carbohydrate Polymers, 111, 215-221.
[39] Di Giorgio, L., Salgado, P. R., & Mauri, A. N. (2019). Encapsulation of fish oil in soybean protein particles by emulsification and spray drying. Food Hydrocolloids, 87, 891-901.
[40] Martín-Diana, A. B., Rico, D., Barat, J. M., & Barry-Ryan, C. (2009). Orange juices enriched with chitosan: Optimisation for extending the shelf-life. Innovative Food Science & Emerging Technologies, 10(4), 590-600.
[41] Potter, R. M., Dougherty, M. P., Halteman, W. A., & Camire, M. E. (2007). Characteristics of wild blueberry–soy beverages. LWT - Food Science and Technology, 40(5), 807-814.
[42] Jafari, S., Pongsarn, K., Srestasupana, C., Wetchasart, N., & Assatarakul, K. (2021). Kinetic study of microbial inhibition by dimethyl dicarbonate and quality attributes of pomegranate juice during cold storage. LWT, 152, 112309.
[43] Unluturk, S., & Atilgan, M. R. (2015). Microbial Safety and Shelf Life of UV-C Treated Freshly Squeezed White Grape Juice. J Food Sci, 80(8), M1831-1841.
[44] Bastos, D. d. S., Gonçalves, M. d. P., Andrade, C. T. d., Araújo, K. G. d. L., & Rocha Leão, M. H. M. d. (2012). Microencapsulation of cashew apple (Anacardium occidentale, L.) juice using a new chitosan–commercial bovine whey protein isolate system in spray drying. Food and Bioproducts Processing, 90(4), 683-692.
[45] Kunjumon, R., Viswanathan, G., & Baby, S. (2021). Biocompatible madecassoside encapsulated alginate chitosan nanoparticles, their anti-proliferative activity on C6 glioma cells. Carbohydrate Polymer Technologies and Applications, 2, 100106.
[46] Celli, G. B., Ravanfar, R., Kaliappan, S., Kapoor, R., & Abbaspourrad, A. (2018). Annatto-entrapped casein-chitosan complexes improve whey color quality after acid coagulation of milk. Food Chemistry, 255, 268-274.
[47] Ziobro, R., Witczak, T., Juszczak, L., & Korus, J. (2013). Supplementation of gluten-free bread with non-gluten proteins. Effect on dough rheological properties and bread characteristic. Food Hydrocolloids, 32(2), 213-220.
[48] Hosseini, S. S., Khodaiyan, F., Mousavi, S. M., & Azimi, S. Z. (2021). Clarification of the pomegranate juice in a bioreactor packed by pectinase enzymes immobilized on the glass bead activated with polyaldehyde polysaccharides. LWT, 137, 110500.
[49] Magerramov, M. A., Abdulagatov, A. I., Azizov, N. D., & Abdulagatov, I. M. (2007). Effect of temperature, concentration, and pressure on the viscosity of pomegranate and pear juice concentrates. Journal of Food Engineering, 80(2), 476-489.
[50] Varela-Santos, E., Ochoa-Martinez, A., Tabilo-Munizaga, G., Reyes, J. E., Pérez-Won, M., Briones-Labarca, V., & Morales-Castro, J. (2012). Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. Innovative Food Science & Emerging Technologies, 13, 13-22.
[51] Bertolini, F. M., Morbiato, G., Facco, P., Marszałek, K., Pérez-Esteve, É., Benedito, J., Zambon, A., & Spilimbergo, S. (2020). Optimization of the supercritical CO2 pasteurization process for the preservation of high nutritional value of pomegranate juice. The Journal of Supercritical Fluids, 164, 104914.
[52] Liu, X., Cui, R., Shi, J., Jiang, Q., Gao, J., Wang, Z., & Li, X. (2021). Separation and microencapsulation of antibacterial compounds from wood vinegar. Process Biochemistry, 110, 275-281.
[53] Li, C., Wang, J., Shi, J., Huang, X., Peng, Q., & Xue, F. (2015). Encapsulation of tomato oleoresin using soy protein isolate-gum aracia conjugates as emulsifier and coating materials. Food Hydrocolloids, 45, 301-308.