مقایسه خصوصیات فیزیکوشیمیایی و حرارتی ژلاتین استخراج شده از فلس ماهی سفید(Caspian kutum)به دو روش سنتی و فراصوت

نویسندگان
1 دانشگاه علوم کشاورزی و منابع طبیعی ساری
2 دانشگاه علوم کشاورزی و منابع طییعی ساری
چکیده
به جهت کاهش ضایعات و افزایش ارزش افزوده فراورده های دریایی، در این مطالعه فلس ماهی سفید به عنوان دور ریز جهت استخراج ژلاتین مورد استفاده قرار گرفت و تاثیر دو روش سنتی و فراصوت بر ویژگی های فیزیکوشیمیایی ژلاتین حاصله مقایسه شد. در این مطالعه ژلاتین از فلس ماهی سفید به دو روش سنتی و فراصوت در دمای 60 درجه سانتیگراد و طی 1، 2 و 3 ساعت استخراج شدند. نتایج نشان داد که به طور کلی فراصوت سبب افزایش معنی دار بازده استخراج، درصد پروتئین و درصد خاکستر نمونه ها شده است (P<0.05). نتایج آنالیز الکتروفورز و همینطور FTIR تایید کردند که فراصوت توانست ساختار پروتئین های ژلاتین را تحت تاثیر قرار دهد و در این راستا زمان استخراج طولانی تر (2 و 3 ساعت) باعث شد که تعداد زنجیره های آلفا در مقایسه با زنجیره های بتا ژلاتین کاهش یابد. طیف FTIR نیز نشان داد تمامی پیک های مربوط به آمیدهای A, B, I, II, III, درنتیجه تیمار فراصوت و افزایش زمان واکنش شدت بیشتری یافتند. همچنین نقطه ذوب و قدرت ژل ژلاتین استخراج شده با فراصوت به ترتیب برابر باC ° 26.67 و g 269 بود به صورت معنی داری پایین تر از ژلاتین استخراج شده به روش سنتی (به ترتیب C ° 27.67 و g307) بود (P<0.05). نتایج حاصل از آنالیز حرارتی ژلاتین ها نشان داد که تمام نمونه ها یک پیک گرماگیر وسیع بین 35 تا 200 درجه سانتیگراد مربوط به تبخیر آب و یک پیک گرماده بین 300 تا 400 درجه سانتیگراد مربوط به تجزیه حرارتی ژلاتین داشتند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comparison of the Physicochemical Properties of Gelatin Extracted from the Caspian Kutum Scales by Conventional and Ultrasound-Assisted Extraction

نویسندگان English

Mahsa Mahjoubi Aciel 1
Ali Motamedzadegan 1
Hoda Fahim 2
Jamshid Farmani 1
1 Sari University of Agricultural Sciences and Natural Resources
2 Sari University of Agricultural Sciences and Natural Resources
چکیده English



In order to reduce waste and increase the added value of marine products, this study utilized Caspian kutum fish scales as fish waste to extract gelatin. The effects of two methods—water-bath and ultrasound—on the physicochemical characteristics of the extracted gelatin were compared. Gelatin was extracted from Caspian kutum fish scales by water bath and ultrasound-assisted extraction at 60 °C for 1, 2, and 3 hours. The results showed that, in general, ultrasound caused a significant increase in the extraction yield, %protein, and %ash of the samples (P<0.05). The results of SDS-PAGE and FTIR analysis confirmed that ultrasound could affect the structure of gelatin proteins, and longer extraction times (2 and 3 hours) caused a decrease in the content of alpha chains compared to that of beta chains. The FTIR results showed amides A, B, I, II, III peaks, and these peaks became more intense in samples extracted by ultrasound and at higher extraction times. The melting point and gel strength of gelatin extracted by ultrasound were 26.67 °C and 269 g, respectively, which were significantly lower than those of the gelatin extracted by water bath (27.67°C and 307g, respectively) (P<0.05). The thermal analysis of gelatins showed that all samples had a broad endothermic peak between 35 °C and 200 °C related to water evaporation and an exothermic peak between 300 °C and 400 °C related to the thermal decomposition of gelatin.

کلیدواژه‌ها English

Caspian Kutum
Gelatin Extraction
Gel Strength Scale
Ultrasound
[1] Khan, S.A., Mini-Review: Opportunities and challenges in the techniques used for preparation of gelatin nanoparticles. Pak. J. Pharm. Sci, 2020. 33(1): p. 221-228.
[2] Hosseini‐Parvar, S.H., et al., Optimising conditions for enzymatic extraction of edible gelatin from the cattle bones using response surface methodology. International journal of food science & technology, 2009. 44(3): p. 467-475.
[3] Kittiphattanabawon, P., et al., Isolation and characterisation of collagen from the skin of brownbanded bamboo shark (Chiloscyllium punctatum). Food Chemistry, 2010. 119(4): p. 1519-1526.
[4] Jongjareonrak, A., et al., Characterization of edible films from skin gelatin of brownstripe red snapper and bigeye snapper. Food Hydrocolloids, 2006. 20(4): p. 492-501.
[5] Pranoto, Y., C.M. Lee, and H.J. Park, Characterizations of fish gelatin films added with gellan and κ-carrageenan. LWT-Food Science and Technology, 2007. 40(5): p. 766-774.
[6] Gómez-Guillén, M.C., et al., Structural and physical properties of gelatin extracted from different marine species: a comparative study. Food Hydrocolloids, 2002. 16(1): p. 25-34.
[7] He, J., et al., The Structural and Functional Differences between Three Species of Fish Scale Gelatin and Pigskin Gelatin. Foods, 2022. 11(24): p. 3960.
[8] Mahjoorian, A., et al., Rheological properties of skin gelatin of Beluga Sturgeon (Huso huso) from The Caspian Sea. Annals of Biological Research, 2013. 4(7): p. 227-234.
[9] Ninan, G., Z. AA, and M. PT, Optimization of gelatin extraction from the skin of freshwater carps by response surface methodology. 2012.
[10] Zhang, F., S. Xu, and Z. Wang, Pre-treatment optimization and properties of gelatin from freshwater fish scales. Food and Bioproducts processing, 2011. 89(3): p. 185-193.
[11] Zarubin, N.Y., et al., Application of the Gadidae fish processing waste for food grade gelatin production. Marine drugs, 2021. 19(8): p. 455.
[12] Mahjoorian, A., S. Jafarian, and F. Fazeli, Nettle (Utrica dioica) Essential oil incorporation in edible film from caspian whitefish (Rutilus frisii kutum) scale: physical, antimicrobial, and morphological characterization. Journal of Aquatic Food Product Technology, 2021. 30(2): p. 151-161.
[13] Huang, T., et al., Rheological and structural properties of fish scales gelatin: Effects of conventional and ultrasound-assisted extraction. International Journal of Food Properties, 2017. 20(sup2): p. 1210-1220.
[14] Abbasi, H., et al., Antibacterial properties and stability of emulsions containing Cuminum cyminum and Oliveria decumbens Vent. essential oils prepared by ultrasound. Journal of food science and technology (Iran), 2019. 16(87): p. 41-51.
[15] Shahidi, S.-A., Effect of solvent type on ultrasound-assisted extraction of antioxidant compounds from Ficaria kochii: Optimization by response surface methodology. Food and Chemical Toxicology, 2022. 163: p. 112981.
[16] Usman, M., et al., Gelatin extraction from fish waste and potential applications in food sector. International Journal of Food Science & Technology, 2022. 57(1): p. 154-163.
[17] Manikandan, A., et al., Engineered fish scale gelatin: An alternative and suitable biomaterial for tissue engineering. Journal of Bioactive and Compatible Polymers, 2018. 33(3): p. 332-346.
[18] Fahim, H., A. Motamedzadegan, and S. Hamzeh, The Effect of Combination of Sorbitol and Polyethylene Glycol on Physicochemical Properties of Gelatin Films Made From (Parastromateus Niger). Research and Innovation in Food Science and Technology, 2017. 6(2): p. 211-220.
[19] Tu, Z.-c., et al., Physico-chemical properties of gelatin from bighead carp (Hypophthalmichthys nobilis) scales by ultrasound-assisted extraction. Journal of food science and technology, 2015. 52: p. 2166-2174.
[20] Iran National Standards Organization, I., Food grade gelatin - Specifications and test
methods - Amd. No. 1. 2022.
[21] Eskandari, Z. and S.A. Jafarpour, A Comparative study on Physio-Chemical Properties of Recovered Gelatin from Beluga (Huso huso) fish skin by Enzymatic and Chemical Methods. Iranian Food Science and Technology Research Journal, 2020. 16(1): p. 157-170.
[22] Tabarestani, H.S., et al., Optimization of physico-chemical properties of gelatin extracted from fish skin of rainbow trout (Onchorhynchus mykiss). Bioresource technology, 2010. 101(15): p. 6207-6214.
[23] Rezaei, M. and A. Motamedzadegan, The effect of plasticizers on mechanical properties and water vapor permeability of gelatin-based edible films containing clay nanoparticles. 2015.
[24] Sinthusamran, S., S. Benjakul, and H. Kishimura, Characteristics and gel properties of gelatin from skin of seabass (Lates calcarifer) as influenced by extraction conditions. Food chemistry, 2014. 152: p. 276-284.
[25] Mirzapour‐Kouhdasht, A., et al., Physicochemical, rheological, and molecular characterization of colloidal gelatin produced from Common carp by‐products using microwave and ultrasound‐assisted extraction. Journal of texture studies, 2019. 50(5): p. 416-425.
[26] Muyonga, J., C. Cole, and K. Duodu, Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food chemistry, 2004. 86(3): p. 325-332.
[27] Ahmad, T., et al., Effects of ultrasound assisted extraction in conjugation with aid of actinidin on the molecular and physicochemical properties of bovine hide gelatin. Molecules, 2018. 23(4): p. 730.
[28] Senarathna, P.D.S. and R.A.U.J. Marapana, Comparative Analysis of the Effect of Ultrasound-Assisted and Conventional Water Bath Extraction Methods on the Physicochemical Characteristics of Tilapia Scales Gelatin. Journal of Aquatic Food Product Technology, 2021. 30(7): p. 893-906.
[29] Asih, I., T. Kemala, and M. Nurilmala. Halal gelatin extraction from Patin fish bone (Pangasius hypophthalmus) by-product with ultrasound-assisted extraction. in IOP Conference Series: Earth and Environmental Science. 2019. IOP Publishing.
[30] Choi, S.S. and J. Regenstein, Physicochemical and sensory characteristics of fish gelatin. Journal of Food Science, 2000. 65(2): p. 194-199.
[31] Apostolov, A., et al., DSC and TGA studies of the behavior of water in native and crosslinked gelatin. Journal of applied polymer science, 1999. 71(3): p. 465-470.
[32] Emamverdian, P., et al., Characterization and optimization of complex coacervation between soluble fraction of Persian gum and gelatin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020. 607: p. 125436.
[33] Dang, X., et al., On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release. Materials Science and Engineering: C, 2017. 74: p. 493-500.