بهینه سازی عصاره کاکل ذرت نانو ریزپوشانی شده به روش سطح پاسخ و ارزیابی خواص ریزپوشینه های حاوی عصاره پایدار شده با صمغ دانه ریحان و ایزوله پروتئین کنجد

نویسندگان
1 دانشجوی دکتری دانشگاه علوم کشاورزی و منابع طبیعی ساری
2 دانشگاه علوم کشاورزی و منابع طبیعی ساری
چکیده
در این مطالعه از صمغ دانه ریحان(BSG) بصورت منفرد و در ترکیب با ایزوله پروتئین کنجد (SPI) به نسبت های 1:0 و 1:1 به منظور انکپسوله کردن عصاره کاکل ذرت(CTE) با استفاده از روش سطح پاسخ در قالب طرح مرکب مرکزی استفاده شد. همچنین به منظور بهینه سازی و بررسی اثر متغییرهای غلظت عصاره کاکل و زمان هموژنیزاسیون بر پاسخ اندازه ذرات و راندمان از معادله درجه دوم استفاده شد. در ابتدا محتوای فنلی کل(TPC)، محتوای فلاونوئید کل(TFC)، فعالیت آنتی اکسیدانی و فعالیت ضد میکروبی عصاره کاکل ذرت بررسی شد. علاوه بر این، فعالیت آنتی اکسیدانی (DPPH & FRAP) اندازه گیری شده، پتانسیل بسیار بالایی از این ترکیبات)11/288FRAP= ، 05/85(DPPH= را برای انکپسوله کردن نشان داد. محتوای فنل کل و فلاونویید حاصل از نتایج آزمون به ترتیب 23/1968 و 20/1346 بود. نتایج حاصل از آنالیز نشان داد نانو ذرات حاصل از ریزپوشانی توسط صمغ دانه ریحان کمترین اندازه ذرات (nm4/494) را داشتند. همچنین بیشترین کارایی درون پوشانی(2/76 درصد) نیز متعلق به نمونه ریزپوشانی شده با صمغ دانه ریحان بود. مقدار پتانسیل زتا در استفاده از پوشش ترکیبی افزایش(57/44) یافت و به بالاترین مقدار خود رسید. در طی نگهداری نانوامولسیون های ریزپوشانی در بازه زمانی صفر، 21،15،7،3 روز، با گذشت زمان پایداری نانوامولسیون ها کاهش یافت به نحوی که بالاترین پایداری مربوط به عصاره نانو ریزپوشانی شده در پوشش ترکیبی(85/94 برای روز صفر و8/33 برای روز 21) را به خود اختصاص داد. نتایج این مطالعه نشان داد که نانو ریزپوشانی عصاره کاکل ذرت با صمغ دانه ریحان کارایی بیشتری از پوشش ترکیبی دارد اما با بررسی سایر پارامترها مانند پایداری، پیشنهاد می گردد این صمغ در ترکیب با سایر مواد دیواره از جمله ایزوله پروتئین کنجد مورد استفاده قرار گیرد تا نتایج مطلوب حاصل شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of Nano encapsulated corn tassel extract by response surface methodology and evaluation of the properties of Nanoencapsules containing extract stabilized by basil seed gum and combination of basil seed gum and sesame protein isolate

نویسندگان English

Zaker Aghakeshipour 1
Zeynab Raftani Amiri 2
Reza Esmaeilzadeh kenari 2
1 Sari Agricultural Sciences and Natural Resources University
2 Sari Agricultural Sciences and Natural Resources University
چکیده English

In this study, basil seed gum (BSG) alone, and in combination with sesame protein isolate (SPI) were used in ratios 1:0 and 1:1 in order to encapsulate corn tassel extract (CTE) using the response surface method in the central composite design template was used. Also, the quadratic equation was used to optimize and investigate the effect of the concentration of corn tassel extract and homogenization time on the response of particle size and efficiency. At first, total phenolic content (TPC), antioxidant activity and antibacterial activity of corn tassel extract were investigated. In addition, the measured antioxidant activity (DPPH&FRAP) showed a very high potential of these compounds (FRAP=288.11, DPPH=85.05) for encapsulation. The content of total phenol and flavonoids obtained from the test results were 1968.23 and 1346.20, respectively. The analysis results showed that the nanoparticles obtained from coating basil seed gum had the lowest particle size (494.4nm). Also, the highest coating efficiency (76.2%) belongs to the sample coated with basil seed gum. The value of zeta potential increased (+44.57) in the use of composite coating, and reached its highest value. During the storage of encapsulated Nano emulsion in the period of 0,3,7,15 and 21 days, the stability of nanoemulsions decreased with the passage of time, in such a way that, the highest stability related to encapsulated Nano extract in the combined coating (94.85 per day zero and 33.8 for day 21). The result of this study showed that nanoencapsulated of corn tassel extract with basil seed gum is more effective than the combined coating. But by checking other parameters (such as stability), It is suggested to use this gum in combination with other wall materials, including sesame protein isolates, to achieve the desired results.

کلیدواژه‌ها English

Tassel extract
encapsulate
particle size
wall material
Optimization
[1] Hosseinnia, M., Almasi, H. and Alizadeh khaledabad, M. (2018). Evaluation of the properties of microcapsules containing Ziziphora clinopodiodesextract stabilized by gum Arabic, whey protein isolate, guar gum and their combinations. Journal of Food Researches, 29(4), 101-123.
[2] Adom, K. K., & Liu, R. H. (2005). Rapid peroxyl radical scavenging capacity (PSC) assay for assessing both hydrophilic and lipophilic antioxidants. Journal of Agricultural and Food Chemistry, 53(17), 6572-6580.
[3] Kandlakunta, B., Rajendran, A., & Thingnganing, L. (2008). Carotene content of some common (cereals, pulses, vegetables, spices and condiments) and unconventional sources of plant origin. Food Chemistry, 106(1), 85-89
[4] Saura-Calixto, F. (2012). Concept and health-related properties of nonextractable polyphenols: The missing dietary polyphenols. Journal of Agricultural and Food Chemistry, 60(45), 11195-11200.
[5] Capocchi, A., Bottega, S., Spano, C., & Fontanini, D. (2017). Phytochemicals and antioxidant capacity in four Italian traditional maize (Zea mays L.) varieties. International Journal of Food Sciences and Nutrition, 68(5), 515-524.
[6] Kapcum, C., Uriyapongson, S., & Uriyapongson, J. (2021). Phenolics, anthocyanins and antioxidant activities in waste products from different parts of purple waxy corn (Zea mays L.). Songklanakarin Journal of Science & Technology, 43(2).
[7] Guven, R. G., Aslan, N., Guven, K., Bekler, F. M., & Acer, O. (2016). Purification and characterization of polyphenol oxidase from corn tassel. Cellular and Molecular Biology, 62(13), 6-11.
[8] Duangpapeng, P., Ketthaisong, D., Lomthaisong, K., Lertrat, K., Scott, M. P., & Suriharn, B. (2018). Corn tassel: A new source of phytochemicals and antioxidant potential for value-added product development in the agro-industry. Agronomy, 8(11), 242.
[9] Manojlović, V., Nedović, V. A., Kailasapathy, K., & Zuidam, N. J. (2010). Encapsulation of probiotics for use in food products. In Encapsulation technologies for active food ingredients and food processing (pp. 269-302): Springer.
[10] Safari, R., Raftani Amiri, Z., Reyhani Poul., S. and Esmailzadeh Kenari, R. (2022). Evaluation and comparison of antioxidant and antibacterial activity of phycocyanin extracted from spirulina microalgae (Spirulina Platensis) in both pure and nanoencasulated forms with maltodextrin -sodium caseinate combination coating. Iranian Journal of Food Science and Technology, 19(127), 345-358.
[11] McClements, D. J., Decker, E. A., Park, Y., & Weiss, J. (2009). Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Critical reviews in food science and nutrition, 49(6), 577-606.
[12] Sahyon, H. A., & Al-Harbi, S. A. (2020). Antimicrobial, anticancer and antioxidant activities of nano-heart of Phoenix dactylifera tree extract loaded chitosan nanoparticles: In vitro and in vivo study. International journal of biological macromolecules, 160, 1230-1241.
[13] Mohammad Kheshtchin, S., Farahmandfar, R., & Farmani, J.(2022). Effect of homogenization on encapsulation of grapefruit (Citrus paradisi) peel essential oil with basil seed gum. Innovation Food Technology. 9(3), 223-238.
[14] Martínez-Ballesta, M., Gil-Izquierdo, Á., García-Viguera, C., & Domínguez-Perles, R. (2018). Nanoparticles and controlled delivery for bioactive compounds: Outlining challenges for new “smart-foods” for health. Foods, 7(5), 72.
[15] Saini, C. S., Sharma, H. K., & Sharma, L. (2018). Thermal, structural and rheological characterization of protein isolate from sesame meal. Journal of Food Measurement and Characterization, 12(1), 426-432.
[16] Onsaard, E., Pomsamud, P., & Audtum, P. (2010). Functional properties of sesame protein concentrates from sesame meal. Asian Journal of Food and Agro-Industry, 3(4), 420-431.
[17] Younis, M. I., Ren, X., Alzubaidi, A. K., Mahmoud, K. F., Altemimi, A. B., Cacciola, F., ... & Abedelmaksoud, T. G. (2022). Optimized green extraction of polyphenols from Cassia javanica L. petals for their application in sunflower oil: Anticancer and antioxidant properties. Molecules, 27(14), 4329.
[18] Esmaeilzadeh Kenari, R., & Razavi, R. (2022). Phenolic profile and antioxidant activity of free/bound phenolic compounds of sesame and properties of encapsulated nanoparticles in different wall materials. Food science & nutrition.
[19] Liu, J., Wang, C., Wang, Z., Zhang, C., Lu, S., & Liu, J. (2011). The antioxidant and free-radical scavenging activities of extract and fractions from corn silk (Zea mays L.) and related flavone glycosides. Food Chemistry, 126(1), 261-269.
[20] Sulaiman, S. F., Sajak, A. A. B., Ooi, K. L., & Seow, E. M. (2011). Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. Journal of Food Composition and analysis, 24(4), 506-515.
[21] Elsayed, N., Marrez, D. A., Ali, M. A., El-Maksoud, A. A. A., Cheng, W., & Abedelmaksoud, T. G. (2022). Phenolic profiling and in-vitro bioactivities of corn (Zea mays L.) tassel extracts by combining enzyme-assisted extraction. Foods, 11(14), 2145.
[22] Esmaeilzadeh kenari & Razavi, R. (2021). Evaluation of Antioxidant Effect of Free and Nano encapsulated Polyphenol of Sesame on Changes in Fatty Acid Profile of Kilka Fish Oil Under Accelerated Conditions. Journal of Innovation in Food Science and Technology, 15(4), 71-90.
[23] Velderrain-Rodríguez, G. R., Acevedo-Fani, A., González-Aguilar, G. A., & Martín-Belloso, O. (2019). Encapsulation and stability of a phenolic-rich extract from mango peel within water-in-oil-in-water emulsions. Journal of functional foods, 56, 65-73.
[24] Khorami, M., Hosseini-Parvar, S.H & Motamed zadegan, A. (2021). The influence of Basil seed gum on the stability, particle size and rheological properties of oil-in-water emulsions stabilized by sodium caseinate. Food Processing and Preservation Journal. 12(2), 139-156.
[25] Ding, Q., Tian, G., Wang, X., Deng, W., Mao, K., & Sang, Y. (2021). Effect of ultrasonic treatment on the structure and functional properties of mantle proteins from scallops (Patinopecten yessoensis). Ultrasonics Sonochemistry, 79, 105770
[26] Gul, O., Saricaoglu, F. T., Atalar, I., Gul, L. B., Tornuk, F., & Simsek, S. (2023). Structural Characterization, Technofunctional and Rheological Properties of Sesame Proteins Treated by High-Intensity Ultrasound. Foods, 12(9), 1791.
[27] Hosseini, S.M.H., Nejadmansori, M. & Niyakosari, M. (2016). Stability of fish oil nanoemulsion stabilized with whey protein isolate (prepared by ultrasonic method) during storage. The first international congress and the 24th national congress of food science and industries of Iran. https://civilica.com/doc/574004
[28] Razavi R, Kenari RE, Farmani J, Jahanshahi M. (2020). Fabrication of zein/alginate delivery system for Nano food model based on pumpkin. International Journal of Biological Macromolecules, 165:3123-34.
[29] Pourshaygan, M., EsmaeilzadehKanari, R. & Farahmandfar, R. (2019). Separated and Combined Effects of Nano Coating of Basil seed gum and perfoliatumseed gum Containing Kiwi Peel Extract to Increase Shelf Life of Sheep's Meat. Journal of food science and technology(Iran), 16(88), 83-95.
[30] Li, X., Wang, L., & Wang, B. (2017). Optimization of encapsulation efficiency and average particle size of Hohenbuehelia serotina polysaccharides nanoemulsions using response surface methodology. Food chemistry, 229, 479-486.
[31] Tarighati, H., Raftani Amiri, Z. and Esmailzadeh Kenari, R. (2021). Comparison of free and encapsulated extracts of Mentha pulegium's leaves in Allysum homolocarpum, chitosan and chitosan- Allysum homolocarpum on oxidative stability of soybean oil during 18 days’ incubation conditions. Journal of Food Researc, 32(3), 29-60.
[32] Wang, T.; Chen, X.; Wang, W.; Wang, L.; Jiang, L.; Yu, D.; Xie, F. (2021). Effect of ultrasound on the properties of rice bran protein and its chlorogenic acid complex. Ultrason. Sonochem. 79, 105758. [CrossRef]
[33] Herculano, E. D., de Paula, H. C., de Figueiredo, E. A., Dias, F. G., & Pereira, V. D. A. (2015). Physicochemical and antimicrobial properties of nanoencapsulated Eucalyptus staigeriana essential oil. LWT - Food Sci. Technol., 61(2), 484-491
[34] Carmona, P. A., Tonon, R. V., da Cunha, R. L., & Hubinger, M. D. (2013). Influence of emulsion properties on the microencapsulation of orange essential oil by spray drying. J. Colloid Sci. Biotechnol, 2(2), 130-139
[35] Maleki, O., Khaledabad, M. A., Amiri, S., Asl, A. K., & Makouie, S. (2020). Microencapsulation of Lactobacillus rhamnosus ATCC 7469 in whey protein isolate -crystalline Nano cellulose -inulin composite enhanced gastrointestinal survivability. LWT, 126, 109224.
[36] Abbasi Ghaznaq, M., Rezazadeh Bari, M., Alizadeh Khaledabad, M. & Amiri, S. (2023). Encapsulation of Lactobacillus acidophilus PTCC 1643 with composite wall of xanthan gum, soy protein isolate and fructooligosaccharide: investigation microcapsule characteristics. Journal of Food Science and Technology (Iran), 19(133), 297-308.
[37] Jamshidi M, Esmaeilzadeh Kenari R, Motamedzadegan A and Biparava P. (2020). Encapsulation of Unsaponifiable Matter of Rice Bran Oil Bychitosan and Lepidium perfoliatum Seed Gum: Characterization and Antioxidant Activity, Journal of the American Oil Chemists' Society 7(21):1-9.
[38] Akbari, E., Ghorbani, M., Sadeghi Mahoonak, A., Alami, M.& Kashaninejad, M. (2016). Effect of sage seed gum and soybean protein isolates on the oil in water emulsion stability. Innovative Food technologies, 3(2), 23-32.
[39] Dickinson, E., Murray, B. S., Stainsby, G., & Anderson, D. M. (1988). Surface activity and emulsifying behaviour of some Acacia gums. Food Hydrocolloids, 2(6), 477-490.
[40] Ghafoori, Z., Fazlara, A., Pourm ahdi, M. and Bavarsad, N. (2022). Evaluation of physical and chemical stability of Omega -3 nanoemulsion and its antibacterial effect on Staphylococcus aureus and Psedumonas aeruginosa. Journal of Food Science and Technology (Iran), 128(19), 119-131.
[41] Shahrampour, M. & Razavi, S.M.A. (2022). Evaluation of stability antimicrobial and antioxidant activity of macromulsion and nanoemulsion of rosemary essential oil. Innovative Food technologies, 9(3), 195-207.
[42] Wang, L. C., Yu, Y. Q., Fang, M., Zhan, C. G., Pan, H. Y., Wu, Y. N., & Gong, Z. Y. (2014). Antioxidant and antigenotoxic activity of bioactive extracts from corn tassel. Journal of Huazhong University of Science and Technology [Medical Sciences], 34, 131-136.
[43] Díaz-García, A., Salvá-Ruíz, B., Bautista-Cruz, N., & Condezo-Hoyos, L. (2021). Optimization of a natural low-calorie antioxidant tea prepared from purple corn (Zea mays L.) cobs and stevia (Stevia rebaudiana Bert.). LWT, 150, 111952.
[44] Khamphasan, P., Lomthaisong, K., Harakotr, B., Ketthaisong, D., Scott, M. P., Lertrat, K., & Suriharn, B. (2018). Genotypic variation in anthocyanins, phenolic compounds, and antioxidant activity in cob and husk of purple field corn. Agronomy, 8(11), 271.
[45] Aminian, R., Mardani, M. and Davoodnia, B. (2018). The effect of hydro alcoholic extract of Plantago major and Astragalus hamosus on some gram-positive and gram-negative bacteria. Journal of plant research (Iranian Journal of Biology), 31(3), 556-567.