[1] Boyano-Orozco, L., Gallardo-Velázquez, T., Meza-Márquez, O. G., & Osorio-Revilla, G. (2020). Microencapsulation of rambutan peel extract by spray drying. Foods, 9(7), 899. https://doi.org/10.3390/foods9070899.
[2] Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272, 494-506. https://doi.org/10.1016/j.foodchem.2018.07.205
[3] Rezvankhah, A., Emam-Djomeh, Z., & Askari, G. (2020). Encapsulation and delivery of bioactive compounds using spray and freeze-drying techniques: A review. Drying Technology, 38(1-2), 235-258. https://doi.org/10.1080/07373937.2019.1653906
[4] Wu, W., Jiang, S., Liu, M., & Tian, S. (2021). Simultaneous process optimization of ultrasound-assisted extraction of polyphenols and ellagic acid from pomegranate (Punica granatum L.) flowers and its biological activities. Ultrasonics Sonochemistry, 80, 105833. https://doi.org/10.1016/j.ultsonch.2021.105833
[5] Yisimayili, Z., Abdulla, R., Tian, Q., Wang, Y., Chen, M., Sun, Z., & Huang, C. (2019). A comprehensive study of pomegranate flowers polyphenols and metabolites in rat biological samples by high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Journal of Chromatography A, 1604, 460472. https://doi.org/10.1016/j.chroma.2019.460472
[6] Dathan, P. C., Nallaswamy, D., Rajeshkumar, S., Joseph, S., & Ismail, S. (2023). Pomegranate uses in biomedicine: a review. Journal of Survey in Fisheries Sciences, 10(1S), 96-116. https://doi.org/10.17762/sfs.v10i1S.153
[7] Bekir, J., Cazaux, S., Mars, M., & Bouajila, J. (2016). In vitro anti-cholinesterase and anti-hyperglycemic activities of flowers extracts from seven pomegranate varieties. Industrial Crops and Products, 81, 176-179. https://doi.org/10.1016/j.indcrop.2015.11.066
[8] Zhao, Y., Liu, C., Ge, D., Yan, M., Ren, Y., Huang, X., & Yuan, Z. (2020). Genome-wide identification and expression of YABBY genes family during flower development in Punica granatum L. Gene, 752, 144784. https://doi.org/10.1016/j.gene.2020.144784
[9] Zhang, L., Fu, Q., & Zhang, Y. (2011). Composition of anthocyanins in pomegranate flowers and their antioxidant activity. Food Chemistry, 127(4), 1444-1449. https://doi.org/10.1016/j.foodchem.2011.01.077
[10] Nie, J., Chen, D., Ye, J., Lu, Y., & Dai, Z. (2021). Optimization and kinetic modeling of ultrasonic-assisted extraction of fucoxanthin from edible brown algae Sargassum fusiforme using green solvents. Ultrasonics Sonochemistry, 77, 105671. https://doi.org/10.1016/j.ultsonch.2021.105671
[11] Jafari, R., Zandi, M., & Ganjloo, A. (2022). Effect of ultrasound and microwave pretreatments on extraction of anise (Pimpinella anisum L.) seed essential oil by ohmic-assisted hydrodistillation. Journal of Applied Research on Medicinal and Aromatic Plants, 31, 100418. https://doi.org/10.1016/j.jarmap.2022.100418
[12] Kutlu, N., Isci, A., Sakiyan, O., & Yilmaz, A. E. (2021). Extraction of phenolic compounds from cornelian cherry (Cornus mas L.) using microwave and ohmic heating assisted microwave methods. Food and Bioprocess Technology, 14, 650-664. https://doi.org/10.1007/s11947-021-02588-0
[13] Shahidi, B., Sharifi, A., Nasiraie, L. R., Niakousari, M., & Ahmadi, M. (2020). Phenolic content and antioxidant activity of flixweed (Descurainia sophia) seeds extracts: Ranking extraction systems based on fuzzy logic method. Sustainable Chemistry and Pharmacy, 16, 100245. https://doi.org/10.1016/j.scp.2020.100245
[14] Moeini, A., Mortazavi, S. A., & Sharifi, A. (2022). Extraction of phenolic compounds from Agrimonia eupatoria using microwave and ultrasound-assisted extraction methods. Journal of Food and Bioprocess Engineering, 5(1), 1-8. https://doi.org/10.22059/jfabe.2022.338100.1108
[15] Matini, S., Mortazavi, S. A., Sadeghian, A. R., & Sharifi, A. (2020). Optimization of Ultrasound Assisted and Maceration Extraction of Bioactive Compounds of Sardasht Black Grape residue by using Response Surface Methodology. Journal of Food Science and Technology (Iran), 17(98), 147-158. http://dx.doi.org/10.29252/fsct.17.01.13
[16] Pereira, S. G., Teixeira-Guedes, C., Souza-Matos, G., Maricato, É., Nunes, C., Coimbra, M. A., ... & Rocha, C. M. (2021). Influence of ohmic heating in the composition of extracts from Gracilaria vermiculophylla. Algal Research, 58, 102360. https://doi.org/10.1016/j.algal.2021.102360
[17] Aslani, A., Zolfaghari, B., & Davoodvandi, F. (2016). Design, formulation and evaluation of an oral gel from Punica granatum flower extract for the treatment of recurrent aphthous stomatitis. Advanced Pharmaceutical Bulletin, 6(3), 391. https://doi.org/10.15171%2Fapb.2016.051
[18] Oroian, M., Dranca, F., & Ursachi, F. (2020). Comparative evaluation of maceration, microwave and ultrasonic-assisted extraction of phenolic compounds from propolis. Journal of Food Science and Technology, 57, 70-78. https://doi.org/10.1007/s13197-019-04031-x
[19] Sánchez-Madrigal, M. Á., Quintero-Ramos, A., Martínez-Bustos, F., Meléndez-Pizarro, C. O., & Ruiz-Gutiérrez, M. G. (2014). Effect of different calcium sources on the antioxidant stability of tortilla chips from extruded and nixtamalized blue corn (Zea mays L.) flours. Food Science and Technology, 34, 143-149. https://doi.org/10.1590/S0101-20612014000100021
[20] Sengkhamparn, N., Chanshotikul, N., Assawajitpukdee, C., & Khamjae, T. (2013). Effects of blanching and drying on fiber rich powder from pitaya (Hylocereus undatus) peel. International Food Research Journal, 20(4), 1595.
[21] Le, T. N., Luong, H. Q., Li, H. P., Chiu, C. H., & Hsieh, P. C. (2019). Broccoli (Brassica oleracea L. var. italica) sprouts as the potential food source for bioactive properties: A comprehensive study on in vitro disease models. Foods, 8(11), 532. https://doi.org/10.3390/foods8110532
[22] Gahruie, H. H., Parastouei, K., Mokhtarian, M., Rostami, H., Niakousari, M., & Mohsenpour, Z. (2020). Application of innovative processing methods for the extraction of bioactive compounds from saffron (Crocus sativus) petals. Journal of Applied Research on Medicinal and Aromatic Plants, 19, 100264. https://doi.org/10.1016/j.jarmap.2020.100264
[23] Pereira, R. N., Rodrigues, R. M., Genisheva, Z., Oliveira, H., de Freitas, V., Teixeira, J. A., & Vicente, A. A. (2016). Effects of ohmic heating on extraction of food-grade phytochemicals from colored potato. LWT, 74, 493-503. https://doi.org/10.1016/j.lwt.2016.07.074
[24] Mohagheghi, S. A., Poorazarang, H., Elhamirad, A. H., Dezashibi, Z., & Hematyar, N. (2010). Extraction of phenolic compounds from potato peel (Ramus variety) with solvent and ultrasound-assisted methods and evaluation of its antioxidant activity in soybean oil. FSCT, 8(28) :81-91 [In Persian].
[25] Shi, J., Yu, J., Pohorly, J., Young, J. C., Bryan, M., & Wu, Y. (2003). Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. Journal of Food Agriculture and Environment, 1(2), 42-47.
[26] Ramos, L., Kristenson, E. M., & Brinkman, U. T. (2002). Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. Journal of Chromatography A, 975(1), 3-29. https://doi.org/10.1016/S0021-9673(02)01336-5
[27] Rifna, E. J., Misra, N. N., & Dwivedi, M. (2023). Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Critical Reviews in Food Science and Nutrition, 63(6), 719-752. https://doi.org/10.1080/10408398.2021.1952923
[28] Coelho, M. I., Pereira, R. N. C., Teixeira, J. A., & Pintado, M. E. (2017). Valorization of tomato wastes: influence of ohmic heating process on polyphenols extraction time. Food and Bioproducts Processing, 117, 329-339.
[29] Safarzadeh Markhali, F., Teixeira, J. A., & Rocha, C. M. (2022). Effect of ohmic heating on the extraction yield, polyphenol content and antioxidant activity of olive mill leaves. Clean Technologies, 4(2), 512-528. https://doi.org/10.3390/cleantechnol4020031
[30] Saifullah, M., McCullum, R., McCluskey, A., & Vuong, Q. (2020). Comparison of conventional extraction technique with ultrasound assisted extraction on recovery of phenolic compounds from lemon scented tea tree (Leptospermum petersonii) leaves. Heliyon, 6(4): e03666. https://doi.org/10.1016/j.heliyon.2020.e03666
[31] Sadeghii, S., Mooraki, N., & Honarvar, M. (2021). Investigating the Possibility of Extraction of khandal Extract by Percolation Method and its Application in Marinated White Indian Shrimp Fillet. Research and Innovation in Food Science and Technology, 10(2), 199-216. https://dx.doi.org/10.22101/jrifst.2021.274948.1232
[32] Algarra, M., Fernandes, A., Mateus, N., de Freitas, V., da Silva, J. C. E., & Casado, J. (2014). Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) from Cuevas Bajas, Spain. Journal of Food Composition and Analysis, 33(1), 71-76. https://doi.org/10.1016/j.jfca.2013.11.005
[33] Tiwari, B. K., Patras, A., Brunton, N., Cullen, P. J., & O’donnell, C. P. (2010). Effect of ultrasound processing on anthocyanins and color of red grape juice. Ultrasonics Sonochemistry, 17(3), 598-604. https://doi.org/10.1016/j.ultsonch.2009.10.009
[34] Pingret, D., Fabiano-Tixier, A. S., & Chemat, F. (2013). Degradation during application of ultrasound in food processing: A review. Food Control, 31(2), 593-606. https://doi.org/10.1016/j.foodcont.2012.11.039
[35] Belwal, T., Huang, H., Li, L., Duan, Z., Zhang, X., Aalim, H., & Luo, Z. (2019). Optimization model for ultrasonic-assisted and scale-up extraction of anthocyanins from Pyrus communis ‘Starkrimson’fruit peel. Food Chemistry, 297, 124993. https://doi.org/10.1016/j.foodchem.2019.124993
[36] Abid, K. Y., Omer, F. H., & Adel, E. M. Phytochemical, Antibacterial, and Antioxidant Screening of Pomegranate Flowers Properties (Alcoholic Extract and Flavonoids). Azerbaijan Medical Journal, 62(3): 1031-1039
[37] Al-Hilphy, A. R., AlRikabi, A. K., & Al-Salim, A. M. (2015). Extraction of phenolic compounds from wheat bran using ohmic heating. Food Science and Quality Management, 43, 21-28.
[38] Rodrigues, N. P., Brochier, B., de Medeiros, J. K., Marczak, L. D. F., & Mercali, G. D. (2021). Phenolic profile of sugarcane juice: Effects of harvest season and processing by ohmic heating and ultrasound. Food Chemistry, 347, 129058. https://doi.org/10.1016/j.foodchem.2021.129058
[39] Papoutsis, K., Pristijono, P., Golding, J. B., Stathopoulos, C. E., Bowyer, M. C., Scarlett, C. J., & Vuong, Q. V. (2018). Optimizing a sustainable ultrasound-assisted extraction method for the recovery of polyphenols from lemon by-products: Comparison with hot water and organic solvent extractions. European Food Research and Technology, 244, 1353-1365. https://doi.org/10.1007/s00217-018-3049-9
[40] Dalagnol, L. M., Dal Magro, L., Silveira, V. C., Rodrigues, E., Manfroi, V., & Rodrigues, R. C. (2017). Combination of ultrasound, enzymes and mechanical stirring: A new method to improve Vitis vinifera Cabernet Sauvignon must yield, quality and bioactive compounds. Food and Bioproducts Processing, 105, 197-204. https://doi.org/10.1016/j.fbp.2017.07.009