[1] Silow, C., Axel, C., Zannini, E., & Arendt, E. K. (2016). Current status of salt reduction in bread and bakery products–a review. Journal of Cereal Science, 72, 135-145.
[2] Boukid, F., Zannini, E., Carini, E., & Vittadini, E. (2019). Pulses for bread fortification: A necessity or a choice?. Trends in Food Science & Technology, 88, 416-428.
[3] Gobbetti, M., De Angelis, M., Corsetti, A., & Di Cagno, R. (2005). Biochemistry and physiology of sourdough lactic acid bacteria. Trends in Food Science & Technology, 16(1-3), 57-69.
[4] Venkidasamy, B., Selvaraj, D., Nile, A. S., Ramalingam, S., Kai, G., & Nile, S. H. (2019). Indian pulses: A review on nutritional, functional and biochemical properties with future perspectives. Trends in Food Science & Technology, 88, 228-242.
[5] Goñi, P., López, P., Sánchez, C., Gómez-Lus, R., Becerril, R., & Nerín, C. (2009). Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food chemistry, 116(4), 982-989.
[6] Mubarak, A. E. (2005). Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food chemistry, 89(4), 489-495.
[7] Cardone, L., Castronuovo, D., Perniola, M., Cicco, N., & Candido, V. (2020). Saffron (Crocus sativus L.), the king of spices: An overview. Scientia Horticulturae, 272, 109560.
[8] Zeka, K., Ruparelia, K. C., Continenza, M. A., Stagos, D., Vegliò, F., & Arroo, R. R. (2015). Petals of Crocus sativus L. as a potential source of the antioxidants crocin and kaempferol. Fitoterapia, 107, 128-134.
[9] Hosseini, A., Razavi, B. M., & Hosseinzadeh, H. (2018). Saffron (Crocus sativus) petal as a new pharmacological target: A review. Iranian journal of basic medical sciences, 21(11), 1091.
[10] Sadeghi, A., Ebrahimi, M., Mortazavi, S. A., & Abedfar, A. (2019). Application of the selected antifungal LAB isolate as a protective starter culture in pan whole-wheat sourdough bread. Food Control, 95, 298-307.
[11] Purabdolah, H., Sadeghi, A., Ebrahimi, M., Kashaninejad, M., Shahiri Tabarestani, H., & Mohamadzadeh, J. (2020). Techno-functional properties of the selected antifungal predominant LAB isolated from fermented acorn (Quercus persica). Journal of Food Measurement and Characterization, 14, 1754-1764.
[12] Hajinia, F., Sadeghi, A., & Sadeghi Mahoonak, A. (2021). The use of antifungal oat‐sourdough lactic acid bacteria to improve safety and technological functionalities of the supplemented wheat bread. Journal of Food Safety, 41(1), e12873.
[13] Ebrahimi, M., Noori, S. M. A., Sadeghi, A., emir Coban, O., Zanganeh, J., Ghodsmofidi, S. M., ... & Raeisi, M. (2022). Application of cereal-bran sourdoughs to enhance technological functionality of white wheat bread supplemented with pumpkin (Cucurbita pepo) puree. LWT, 158, 113079.
[14] Rouhi, E., Sadeghi, A., Jafari, S. M., Abdolhoseini, M., & Assadpour, E. (2023). Effect of the controlled fermented quinoa containing protective starter culture on technological characteristics of wheat bread supplemented with red lentil. Journal of Food Science and Technology, 60, 2193-2203.
[15] González-Montemayor, A. M., Solanilla-Duque, J. F., Flores-Gallegos, A. C., López-Badillo, C. M., Ascacio-Valdés, J. A., & Rodríguez-Herrera, R. (2021). Green bean, pea and mesquite whole pod flours nutritional and functional properties and their effect on sourdough bread. Foods, 10(9), 2227.
[16] Coda, R., Varis, J., Verni, M., Rizzello, C. G., & Katina, K. (2017). Improvement of the protein quality of wheat bread through faba bean sourdough addition. LWT-Food Science and Technology, 82, 296-302.
[17] Nionelli, L., Pontonio, E., Gobbetti, M., & Rizzello, C. G. (2018). Use of hop extract as antifungal ingredient for bread making and selection of autochthonous resistant starters for sourdough fermentation. International journal of food microbiology, 266, 173-182.
[18] Debonne, E., Van Bockstaele, F., De Leyn, I., Devlieghere, F., & Eeckhout, M. (2018). Validation of in-vitro antifungal activity of thyme essential oil on Aspergillus niger and Penicillium paneum through application in par-baked wheat and sourdough bread. Lwt, 87, 368-378.
[19] AACC International. (2010). Approved methods of the American association of cereal chemists. 11th Ed. The St. Paul.
[20] Irakli, M., Mygdalia, A., Chatzopoulou, P., & Katsantonis, D. (2019). Impact of the combination of sourdough fermentation and hop extract addition on baking properties, antioxidant capacity and phenolics bioaccessibility of rice bran-enhanced bread. Food chemistry, 285, 231-239.
[21] Abnous, K., Brooks, S. P., Kwan, J., Matias, F., Green-Johnson, J., Selinger, L. B., ... & Kalmokoff, M. (2009). Diets enriched in oat bran or wheat bran temporally and differentially alter the composition of the fecal community of rats. The Journal of nutrition, 139(11), 2024-2031.
[22] Katina, K., Juvonen, R., Laitila, A., Flander, L., Nordlund, E., Kariluoto, S., ... & Poutanen, K. (2012). Fermented wheat bran as a functional ingredient in baking. Cereal chemistry, 89(2), 126-134.
[23] Meignen, B., Onno, B., Gélinas, P., Infantes, M., Guilois, S., & Cahagnier, B. (2001). Optimization of sourdough fermentation with Lactobacillus brevis and baker's yeast. Food microbiology, 18(3), 239-245.
[24] Rizzello, C. G., Nionelli, L., Coda, R., Di Cagno, R., & Gobbetti, M. (2010). Use of sourdough fermented wheat germ for enhancing the nutritional, texture and sensory characteristics of the white bread. European Food Research and Technology, 230, 645-654.
[25] Turabi, E., Sumnu, G., & Sahin, S. (2010). Quantitative analysis of macro and micro-structure of gluten-free rice cakes containing different types of gums baked in different ovens. Food hydrocolloids, 24(8), 755-762.
[26] Gerez, C. L., Torino, M. I., Rollán, G., & de Valdez, G. F. (2009). Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food control, 20(2), 144-148.
[27] Katina, K., Heiniö, R. L., Autio, K., & Poutanen, K. (2006). Optimization of sourdough process for improved sensory profile and texture of wheat bread. LWT-Food Science and Technology, 39(10), 1189-1202.
[28] Harth, H., Van Kerrebroeck, S., & De Vuyst, L. (2016). Community dynamics and metabolite target analysis of spontaneous, backslopped barley sourdough fermentations under laboratory and bakery conditions. International Journal of Food Microbiology, 228, 22-32.
[29] Häggman, M., & Salovaara, H. (2008). Microbial re-inoculation reveals differences in the leavening power of sourdough yeast strains. LWT-Food Science and Technology, 41(1), 148-154.
[30] Minervini, F., De Angelis, M., Di Cagno, R., & Gobbetti, M. (2014). Ecological parameters influencing microbial diversity and stability of traditional sourdough. International journal of food microbiology, 171, 136-146.
[31] Vogelmann, S. A., Seitter, M., Singer, U., Brandt, M. J., & Hertel, C. (2009). Adaptability of lactic acid bacteria and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava and use of competitive strains as starters. International journal of food microbiology, 130(3), 205-212.
[32] Bojnanská, T., Francáková, H., Lísková, M., & Tokár, M. (2012). Legumes-The alternative raw materials for bread production. The Journal of Microbiology, Biotechnology and Food Sciences, 1, 876.
[33] Giménez, M. A., Drago, S. R., De Greef, D., Gonzalez, R. J., Lobo, M. O., & Samman, N. C. (2012). Rheological, functional and nutritional properties of wheat/broad bean (Vicia faba) flour blends for pasta formulation. Food chemistry, 134(1), 200-206.
[34] Perri, G., Coda, R., Rizzello, C. G., Celano, G., Ampollini, M., Gobbetti, M., ... & Calasso, M. (2021). Sourdough fermentation of whole and sprouted lentil flours: In situ formation of dextran and effects on the nutritional, texture and sensory characteristics of white bread. Food Chemistry, 355, 129638.
[35]Clarke, C. I., Schober, T. J., Dockery, P., O'Sullivan, K., & Arendt, E. K. (2004). Wheat sourdough fermentation: effects of time and acidification on fundamental rheological properties. Cereal chemistry, 81(3), 409-417.
[36] Schober, T. J., Dockery, P., & Arendt, E. K. (2003). Model studies for wheat sourdough systems using gluten, lactate buffer and sodium chloride. European Food Research and Technology, 217, 235-243.
[37] Thiele, C., Gänzle, M. G., & Vogel, R. F. (2002). Contribution of sourdough lactobacilli, yeast, and cereal enzymes to the generation of amino acids in dough relevant for bread flavor. Cereal chemistry, 79(1), 45-51.
[38] Algboory, H. L., Kadum, H., & Muhialdin, B. J. (2021). Shelf-life assessment of bread containing Cyperus rotundus rhizome aqueous extract with antimicrobial compounds identified by 1H-NMR. LWT, 140, 110823.
[39] Quattrini, M., Liang, N., Fortina, M. G., Xiang, S., Curtis, J. M., & Gänzle, M. (2019). Exploiting synergies of sourdough and antifungal organic acids to delay fungal spoilage of bread. International journal of food microbiology, 302, 8-14.
[40] Ávila Sosa Sánchez, R., Portillo‐Ruiz, M. C., Viramontes‐Ramos, S., Muñoz‐Castellanos, L. N., & Nevárez‐Moorillón, G. V. (2015). Effect of M exican Oregano (L ippia berlandieri S chauer) Essential Oil Fractions on the Growth of A spergillus spp. in a Bread Model System. Journal of Food Processing and Preservation, 39(6), 776-783.
[41] Salim-ur-Rehman, S. H., Nawaz, H., Ahmad, M. M., Murtaza, M. A., & Rizvi, A. J. (2007). Inhibitory effect of citrus peel essential oils on the microbial growth of bread. Pakistan Journal of Nutrition, 6(6), 558-561.
[42] Aryashad, M., Sadeghi, A., Nouri, M., Ebrahimi, M., Kashaninejad, M., & Aalami, M. (2023). Use of fermented sprouted mung bean (Vigna radiata) containing protective starter culture LAB to produce clean‐label fortified wheat bread. International Journal of Food Science & Technology, 58(6), 3310-3320.
[43] Paterson, A., & Piggott, J. R. (2006). Flavour in sourdough breads: a review. Trends in Food Science & Technology, 17(10), 557-566.
[44] Sadeghi, A., Ebrahimi, M., Hajinia, F., Kharazmi, M. S., & Jafari, S. M. (2023). FoodOmics as a promising strategy to study the effects of sourdough on human health and nutrition, as well as product quality and safety; back to the future. Trends in Food Science & Technology, 136, 24–47.