بهینه سازی تولید پروتئین هیدرولیز شده با ویژگی آنتی اکسیدانی از سبوس برنج طارم توسط آنزیم آلکالاز

نویسندگان
1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2 دانشکده پزشکی، دانشگاه علوم پزشکی مازندران
3 گروه تغذیه دانشکده بهداشت، علوم پزشکی مازندران
چکیده
پپتیدهای حاصل از هیدرولیز پروتئین دارای خواص زیست فعالی متعددی بوده و دارای فعالیت آنتی اکسیدانی قوی در برابر رادیکال های آزاد هستند و از فرآیندهای اکسیداسیون که سبب آسیب به ماکرومولکول‌های بیولوژیکی و تخریب و افت کیفیت غذا میگردد، جلوگیری می­کنند. با توجه به حجم زیاد تولید برنج در دنیا، مقدار زیادی سبوس برنج تولید و در دسترس می باشد. با توجه به عنوان منبع پروتئینی مناسب و ارزان، سبوس برنج میتواند برای تولید پپتید با منشاء گیاهی مورد استفاده قرار گیرد. بهینه سازی شرایط هیدرولیز آنزیمی پروتئین سبوس برنج توسط آنزیم آلکالاز با هدف دستیابی به حداکثر خاصیت آنتی اکسیدانی صورت گرفت. به منظور بررسی فعالیت آنتی اکسیدانی پپتیدهای حاصله از آزمون های قدرت احیاکنندگی آهن 3 و سنجش فعالیت مهار کنندگی رادیکال های آزاد DPPH و فعالیت آنتی اکسیدانی کل استفاده شد. جهت بهینه سازی فرآیند از نرم افزار Design Expert و روش سطح پاسخ با سه متغیر مستقل : غلظت آنزیم به سوبسترا 3 - 1 درصد، دمای 55 - 40 درجه سانتیگراد و زمان هیدرولیز 210 - 30 دقیقه انجام شد. تیمار بهینه در شرایط تعیین شده شامل دمای 51.5 درجه سانتیگراد، زمان 131.5 دقیقه و غلظت آنزیم به سوبسترا 3 درصد به دست آمد که دارای حداکثر مهارکنندگی رادیکال آزادDPPH 37.172 درصد، فعالیت آنتی اکسیدانی کل 1.109 درصد و احیاکنندگی 2.084 درصد تعیین شده است. نتایج به دست آمده نشان داد است فرآیند هیدرولیز پروتئین سبوس برنج توسط آنزیم آلکالاز، منجر به تولید پپتیدهایی با ویژگی آنتی اکسیدانی بالا و قابل توجه شده که میتواند در تولید غذاهای فراسودمند و صنایع دارویی استفاده و همچنین جایگزین آنتی اکسیدان های سنتزی شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimizing the production of hydrolyzed protein with antioxidant properties from Tarem rice bran by alcalase enzyme

نویسندگان English

fatemeh rezanejad amirdehi 1
alireza sadeghi mahonak 1
Mohammad Ghorbani 1
mohsen rashidi 2
Seyadeh Narges Mazloomi 3
1 Gorgan University of Agricultural Sciences and Natural Resources
2 Facultyof Medicine, Mazandaran Universityof Medical Sciences
3 Department of Nutrition, Faculty of Health, Medical Sciences, Mazandaran,
چکیده English

AbstractPeptides obtained from protein hydrolysis have many bioactive properties and have strong antioxidant activity against free radicals and prevent oxidation processes that cause damage to biological macromolecules and degradation and loss of food quality. Due to the large amount of rice production in the world, a large amount of rice bran is produced and available. As a suitable and cheap protein source, rice bran can be used for the production of plant-derived peptides. Optimizing conditions of enzymatic hydrolysis of rice bran protein by alcalase enzyme was done with the aim of achieving maximum antioxidant properties. In order to check the antioxidant activity of the obtained peptides, iron 3 reduction power tests and DPPH free radical inhibitory activity and total antioxidant activity were used. In order to optimize the process, Design Expert software and response surface method were used with three independent variables: enzyme concentration to substrate 1-3%, temperature 40-55 degrees Celsius and hydrolysis time 30-210 minutes. The optimal treatment was obtained under the determined conditions including temperature of 51.5 degrees Celsius, time of 131.5 minutes and concentration of enzyme to substrate of 3%, which has maximum DPPH free radical inhibition of 37.172%, total antioxidant activity of 1.109% and reductiveness of 2.084%. The obtained results showed that the hydrolysis process of rice bran protein by alkalase enzyme has led to the production of peptides with high and significant antioxidant properties that can be used in the production of useful foods and pharmaceutical industries and can also replace synthetic antioxidants.

:

کلیدواژه‌ها English

Optimization
Hydrolyzed protein
Antioxidant property
Rice bran protein
enzymatic
منابع
[1] Shahidi, F., Zhong, Y. Bioactive peptides. J. AOAC Int. 2008, 91, 914–931Franek, F.; Hohenwarter, O.; Katinger, H. Plant protein hydrolysates: Preparation of defined peptide fractions promoting growth and production in animal cells cultures. Biotechnol. Prog. 2000, 16, 688–692.
[2] Kitts, D. D, Weiler K, Bioactive proteins and peptides from food sources Applications of bioprocesses used in isolation and recovery. Current Pharmaceutical Design. vol. 9, no. 16.1309–1323, 2003.
[3] Sun, J., He, H., Xie, BJ. (2004). Novel antioxidant peptides from fermented mushroom Ganoderma lucidum. Food Chemistry, 52, 6646–52.
[4] Childs, N. W. 2004. Production and Utilization of Rice. In: CHAMPAGNE, E. T. (ed.) Rice: Chemistry and Techology. 3rd ed. St. Paul, Minnesota, USA: American Association of Cereal Chemists, Inc.
[5] Roy, B., Dunna, V. (Oryza sativa L.) 2014.Orthoefer, F. T. 2001. Rice bran oil: Composition, production, nutrition, and utilization. In: WILSON, R. F. Proceeding of The World Conference on Oilseed Processing Utilization. Champaign, IL: AOCS Press.
[6] Shih, F. F., Champagne, E. T., Daigle, K. & Zarins, Z. 1999. Use of enzymes in the processing of protein products from rice bran and rice flour. Nahrung, 43, 14-18
[7] Orthoefer, F. T. & Eastman, J. 2004. Rice Bran and Oil In: Champagne, E. T. (ed.) Rice: Chemistry and Technology. 3rd ed. St. Paul, Minnesota, USA: American Association of Cereal Chemists, Inc
[8] Dayem, A. A., Hossain, M. K., Lee, S. B., Kim, K., Saha, S. K., Yang, G., Choi, H. Y., Cho, S. G. 2017. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. Int J Mol Sci, 10;18(1):120.
[9] Namiki, M. 1990. Antioxidants/antimutagens in food. Critical Reviews in Food Science and Nutrition, 29 (4):273–300.
[10] Hayta, M., Benli, B., İşçimen, E. slı Kaya, A. 2020. Optimization of antihypertensive and antioxidant hydrolysate extraction from rice bran proteins using ultrasound assisted enzymatic hydrolysis. Journal of Food Measurement and Characterization, 14(3).
[11] Wattanasiritham, L. Theerakulkait, Ch., Wickramasekara, S., Maier, c. d., Stevens, J. F. 2016. Isolation and identification of antioxidant peptides from enzymatically hydrolyzed rice bran protein. Food Chemistry. 192: 156-162.
[12] Uraipong, C. h. and Zhao, J. 2016. Rice bran protein hydrolysates exhibit strong in vitro α-amylase, β-glucosidase and ACE-inhibition activities. Journal of Science Food and Agriculture, 15; 96, (4).
[13] Wang, M., Hettiarachchy, N. S., Qi, M., Burks, W., and Siebenmogen, T. 1999. Preparation and functional properties of rice bran protein concentrate. Journal of Agricultural and Food Chemistry, 47:411–416.
[14] Yeom, H. J., Lee, E. H., Ha, M. S., HAa, S. D., BAE, D. H. 2010. Production and Physicochemical Properties of Rice Bran Protein Isolates Prepared with Autoclaving and Enzymatic Hydrolysis. Journal of the Korean Society for Applied Biological Chemistry. 53, 62-70.
[15] He, R., Girgih, A. T., Malomo, S. A., Ju, X., & Aluko, R. E. 2013. Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods. 5(1), 219-227
[16] AOAC Method, 983.23 .2003. Fat in food, chloroform-methanol extraction. In Official methods of analysis (15th ed; pp. 101-111) Washington, DC, USA: Association of Official Analytical Chemists.
[17] Wu, H., Chen, H., Shiau C. 2003. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel. Food Research International. 36 (9-10):949-957.
[18] Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y. and Nasri, M. 2009. Antioxidant and free radical-scavenging activities of smooth hound muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry.114 (4):1198-1205.
[19] Prieto, P., Pineda, M., & Aguilar, M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337-341.
[20] Aletor, O., Oshodi AA and Ipinmoroti K, 2002. Chemical composition of common leafy vegetables and functional properties of their leaf protein concentrates. Food Chemistry 78:63–68.
[21] Ammisah, J. G. N., Ellis, W.O. Oduro, I. & Manful, J. T. 2003. Nutrient composition of bran from new rice varieties under study in Ghana. Food Control. 14(1), 21-24.
[22] Gholami, N., Bardani Amiri, Z., Safari, R. 2018. Enzymatic extraction of tarem rice bran protein and investigation of its functional properties and physicochemical characteristics of low-fat yogurt. Journal of New Food Technologies, Volume 7, Number 2, Pages 299-311 [in persian].
[23] Taha, S. F., Mohamed, S. S., Wagdy M. S., Mohamed, F. G. 2013. Antioxidant and antimicrobial activities of enzymatic hydrolysis products from sunflower protein isolate. World Applied Sciences Journal. 21, 651-658.
[24] Guerard, F., Guimas, L., Binet, A. 2002. Production of tuna waste hydrolysates by a commercial neutral protease preparation. Journal of Molecular Catalysis B: Enzymatic 19–20, 489–498.
[25] Oveisi pour, M., Abedian, A. M., Motamedzadegan, A., Rasco, B., Safari, R., Shahiri, H. 2009. The effect of enzymatic hydrolysis time and temperature on the properties ofproteinhydrolysates from the Persian sturgeon (Acipenserpersicus) viscera. FoodChemistry,115, 238-242.
[26] Wang, B., Li, L., Chi, C., Ma, J., Luo, H., & Xu, Y. 2013. Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate. Food Chemistry, 138(2), 1713-1719.
[27] Jin, D. X., Liu, X., Zheng, X., Wang, X., He, J. 2016. Preparation of antioxidative corn protein hydrolysates, purification and evaluation of three novel corn antioxidant peptides. Food Chemistry. 204, 427-436.
[28] He, R., Girgih, A. T., Malomo, S. A., Ju, X., & Aluko, R. E. 2013. Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods. 5(1), 219-227.
[29] Wang, P. Lin, Y. WU, H. lin, J. Chen, Y. Hamzah3, S, S. Zeng, H. Zhang, Y. HU, J. 2020. Preparation of antioxidant peptides from hairtail surimi using hydrolysis and evaluation of its antioxidant stabilityFood Sci. Technol, Campinas, 40(4): 945-955.
[30] Wang, D., Shahidi, F. 2018. Protein hydrolysate from turkey meat and optimization of its antioxidant potential by response surface methodology. Poult Sci, 97:1824–1831.
[31] Soares, M., Souza, C. G., Daniel, F. M., Ferrari, G. P., Costa, S. M. G. Peralta, R.M. 2009. Antioxidant activity and total phenolic content of Agaricus brasiliensis (Agaricus blazei Murri) in two stages of maturity. Food chemistry. 112:775-781.
[32] Je, J, Y,. Lee, K., H., Lee, M.H, and Ahm. C.B. 2009. Antioxidant and antihypertensive protein hydrlysates produced from tune liver by enzymatic hydrolysis. Food reserch international, 42:1266-127.
[33] Prieto, P., Pineda, M., & Aguilar, M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337-341.
[34] Meshkinfar, N., Sadeghi mahoonak, A.R., Ziaiifar, A.M., ghorbani, M., Kashani Nejad, M. 2014. Optimization of the production of protein hydrolysates from meat industry by product by respons surface methodology. Journal of Food Researches, 24(2):215-225.
[35] Taheri, A., Anvar, S. A. A., Ahari H., Fogliano, V. 2013. Comparison the functional properties of protein Hydrolysates from poultry by-products and rainbow trout viscera. Iranian Journal of Fisheries Sciences. 12(1) :154-169