[1]Al-Shurait, E. A., & Al-Ali, R. M. (2022). Optimal conditions for anthocyanins extracting from some food wastes. Caspian Journal of Environmental Sciences, 20(3), 503-512.
[2]Selim, K., Tsimidou, M., & Biliaderis, C. (2000). Kinetic studies of degradation of saffron carotenoids encapsulated in amorphous polymer matrices. Food Chemistry, 71(2), 199-206.
[3] Sharaiei, P., Parveen, Ain Afshar, Kamali, Azadeh, & Nazam. (2014). The effect of the type and concentration of wall materials on the microcoating of color compounds of saffron extract using freeze drying. Engineering Research of Irrigation and Drainage Structures, 15(1), 25-38
[4] Belwal, T., Singh, G., Jeandet, P., Pandey, A., Giri, L., Ramola, S., Bhatt, I. D., Venskutonis, P. R., Georgiev, M. I., & Clément, C. (2020). Anthocyanins, multi-functional natural products of industrial relevance: Recent biotechnological advances. Biotechnology advances, 43, 107600.
[5] Arroyo-Maya, I. J., & McClements, D. J. (2015). Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food research international, 69, 1-8.
[6] Shaddel, R., Hesari, J., Azadmard-Damirchi, S., Hamishehkar, H., Fathi-Achachlouei, B., & Huang, Q. (2018). Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International journal of biological macromolecules, 107, 1800-1810.
[7] Buchweitz, M., Speth, M., Kammerer, D., & Carle, R. (2013). Impact of pectin type on the storage stability of black currant (Ribes nigrum L.) anthocyanins in pectic model solutions. Food Chemistry, 139(1-4), 1168-1178.
[8] Souza, V. (2015). De; Thomazini, M.; Balieiro, JC; de, C.; Fávaro-Trindade, CS Effect of Spray Drying on the Physicochemical Properties and Color Stability of the Powdered Pigment Obtained from Vinification Byproducts of the Bordo Grape (Vitis Labrusca). Food Bioprod. Process, 93, 39-50.
[9] Moradkhani (2020). Investigating the phytochemical characteristics of the fruit of three genotypes of L. Ficus carica plant in Khoy city. Ecophytochemistry of medicinal plants, 8(2), 30-44
[10] Kikha, Z., Seifi, A., Varasteh, F., Faryal, & Ghasemnejad. (2015). Investigating some morphological and phytochemical traits in different stages of growth and fruit development in three genotypes of Ficus carica. Ecophytochemistry of medicinal plants, 35-42.
[11] He, J., & Giusti, M. M. (2010). Anthocyanins: natural colorants with health-promoting properties. Annual review of food science and technology, 1, 163-187.
[12] Kruger, M. J., Davies, N., Myburgh, K. H., & Lecour, S. (2014). Proanthocyanidins, anthocyanins and cardiovascular diseases. Food research international, 59, 41-52.
[13] Rezaei, A., Varshosaz, J., Fesharaki, M., Farhang, A., & Jafari, S. M. (2019). Improving the solubility and in vitro cytotoxicity (anticancer activity) of ferulic acid by loading it into cyclodextrin nanosponges. International journal of nanomedicine, 4589-4599.
[14] Moser, P., Souza, R. T. D., & Nicoletti Telis, V. R. (2017). Spray drying of grape juice from hybrid cv. BRS Violeta: microencapsulation of anthocyanins using protein/maltodextrin blends as drying aids. Journal of Food Processing and Preservation, 41(1), e12852.
[15] Bakowska-Barczak, A. M., & Kolodziejczyk, P. P. (2011). Black currant polyphenols: Their storage stability and microencapsulation. Industrial crops and products, 34(2), 1301-1309.
[16] Giusti, M. M., & Wrolstad, R. E. (2003). Acylated anthocyanins from edible sources and their applications in food systems. Biochemical engineering journal, 14(3), 217-225.
[17] He, B., Zhang, L.-L., Yue, X.-Y., Liang, J., Jiang, J., Gao, X.-L., & Yue, P.-X. (2016). Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chemistry, 204, 70-76.
[18] Khazaei, K. M., Jafari, S., Ghorbani, M., & Kakhki, A. H. (2014). Application of maltodextrin and gum Arabic in microencapsulation of saffron petal's anthocyanins and evaluating their storage stability and color. Carbohydrate polymers, 105, 57-62.
[19] Pérez-Masiá, R., López-Nicolás, R., Periago, M. J., Ros, G., Lagaron, J. M., & López-Rubio, A. (2015). Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chemistry, 168, 124-133.
[20] Homayoonfal, M., Mousavi, S. M., Kiani, H., Askari, G., Desobry, S., & Arab-Tehrany, E. (2021). Encapsulation of berberis vulgaris anthocyanins into nanoliposome composed of rapeseed lecithin: A comprehensive study on physicochemical characteristics and biocompatibility. Foods, 10(3), 492.
[21] Zoghi, A., Khosravi-Darani, K., & Omri, A. (2018). Process variables and design of experiments in liposome and nanoliposome research. Mini reviews in medicinal chemistry, 18(4), 324-344.
[22] Hasan, M., Messaoud, G. B., Michaux, F., Tamayol, A., Kahn, C. J., Belhaj, N., Linder, M., & Arab-Tehrany, E. (2016). Chitosan-coated liposomes encapsulating curcumin: Study of lipid–polysaccharide interactions and nanovesicle behavior. RSC advances, 6(51), 45290-45304.
[23] Reza Mozafari, M., Johnson, C., Hatziantoniou, S., & Demetzos, C. (2008). Nanoliposomes and their applications in food nanotechnology. Journal of liposome research, 18(4), 309-327.
[24] Mahdi, A. A., Mohammed, J. K., Al-Ansi, W., Ghaleb, A. D., Al-Maqtari, Q. A., Ma, M., Ahmed, M. I., & Wang, H. (2020). Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying. International journal of biological macromolecules, 152, 1125-1134.
[25] Bryła, A., Lewandowicz, G., & Juzwa, W. (2015). Encapsulation of elderberry extract into phospholipid nanoparticles. Journal of Food Engineering, 167, 189-195.
[26] Emami, S., Azadmard-Damirchi, S., Peighambardoust, S. H., Valizadeh, H., & Hesari, J. (2016). Liposomes as carrier vehicles for functional compounds in food sector. Journal of Experimental Nanoscience, 11(9), 737-759.
[27] Lee, P. S., Yim, S. G., Choi, Y., Ha, T. V. A., & Ko, S. (2012). Physiochemical properties and prolonged release behaviours of chitosan-denatured β-lactoglobulin microcapsules for potential food applications. Food Chemistry, 134(2), 992-998.
[28] Delfanian, M., Esmaeilzadeh Kenari, R., & Sahari, M. A. (2016). Utilization of Jujube fruit (Ziziphus mauritiana Lam.) extracts as natural antioxidants in stability of frying oil. International Journal of Food Properties, 19(4), 789-801.
[29]Sepeharifar, Roshank, & Hassanlou. (2010). Investigation of polyphenol compounds, anthocyanins and total flavonoids and antioxidant properties of the medicinal plantofQaraqat (Vaccinium arctostaphylos L.) collected from four different regions of Iran. Scientific Research Quarterly Journal of Medicinal Plants, 9(33), 66-74.
[30] Yuan, L., Geng, L., Ge, L., Yu, P., Duan, X., Chen, J., & Chang, Y. (2013). Effect of iron liposomes on anemia of inflammation. International journal of pharmaceutics, 454(1), 82-89.
[31] Alavi, M., Karimi, N., & Safaei, M. (2017). Application of various types of liposomes in drug delivery systems. Advanced pharmaceutical bulletin, 7(1), 3.
[32] Hamidi, M., Pirozifard, M. K., Alizadeh Khaledabad, M., & Almasi, H. (2018). Nano-Liposome of Grape Seed Extract with a New Formulation and its Application in the Dough. Research and Innovation in Food Science and Technology, 6(4), 403-412.
[33] Cai, Z., Qu, Z., Lan, Y., Zhao, S., Ma, X., Wan, Q., Jing, P., & Li, P. (2016). Conventional, ultrasound-assisted, and accelerated-solvent extractions of anthocyanins from purple sweet potatoes. Food Chemistry, 197, 266-272.
[34] Ghorbanzade, T., Jafari, S. M., Akhavan, S., & Hadavi, R. (2017). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry, 216, 146-152.
[35] Ghareaghajlou, N., Hallaj-Nezhadi, S., & Ghasempour, Z. (2022). Nano-liposomal system based on lyophilization of monophase solution technique for encapsulating anthocyanin-rich extract from red cabbage. Dyes and Pigments, 202, 110263.
[36] Zhao, L., Temelli, F., & Chen, L. (2017). Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. Journal of Functional Foods, 34, 159-167.
[37] Alexander, M., Lopez, A. A., Fang, Y., & Corredig, M. (2012). Incorporation of phytosterols in soy phospholipids nanoliposomes: Encapsulation efficiency and stability. Lwt, 47(2), 427-436.
[38] Pezeshky, A., Ghanbarzadeh, B., Hamishehkar, H., Moghadam, M., & Babazadeh, A. (2016). Vitamin Apalmitate-bearing nanoliposomes: Preparation and characterization. Food bioscience, 13, 49-55.
[39] Demirci, M., Caglar, M. Y., Cakir, B., &Gülseren, İ. (2017). Encapsulation by nanoliposomes. Nanoencapsulation technologies for the food and nutraceutical industries, 74-113.
[40] Bochicchio, S., Barba, A. A., Grassi, G., & Lamberti, G. (2016). Vitamin delivery: Carriers based on nanoliposomes produced via ultrasonic irradiation. LWT-Food Science and Technology, 69, 9-16.
[41] Homayoonfal, M., Mousavi, M., Kiani, H., Askari, G., Desobry, S., & Arab-Tehrany, E. (2022). Modifying the Stability and Surface Characteristic of Anthocyanin Compounds Incorporated in the Nanoliposome by Chitosan Biopolymer. Pharmaceutics, 14(8), 1622.
[42] Osorio, C., Acevedo, B., Hillebrand, S., Carriazo, J., Winterhalter, P., & Morales, A. L. (2010). Microencapsulation by spray-drying of anthocyanin pigments from corozo (Bactris guineensis) fruit. Journal of Agricultural and Food Chemistry, 58(11), 6977-6985.
[43] Kayisoglu, S., & Coskun, F. (2020). Determination of physical and chemical properties of kombucha teas prepared with different herbal teas. Food Science and Technology, 41, 393-397.
[44] Zhao, Z.-j., Sui, Y.-c., Wu, H.-w., Zhou, C.-b., Hu, X.-c., & Zhang, J. (2018). Flavour chemical dynamics during fermentation of kombucha tea. Emirates Journal of Food and Agriculture, 732-741.
[45] Jayabalan, R., Marimuthu, S., & Swaminathan, K. (2007). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry, 102(1), 392-398.
[46] Oancea, S., Grosu, C., Ketney, O., & Stoia, M. (2013). Conventional and ultrasound-assisted extraction of anthocyanins from blackberry and sweet cherry cultivars. Acta Chimica Slovenica, 60(2), 383-389.
[47] Mohammadi, M., Ghanbarzadeh, B., & Hamishehkar, H. (2014). Formulation of nanoliposomal vitamin D3 for potential application in beverage fortification. Advanced pharmaceutical bulletin, 4(Suppl 2), 569.
[48] Chen, X., Zou, L.-Q., Niu, J., Liu, W., Peng, S.-F., & Liu, C.-M. (2015). The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules, 20(8), 14293-14311.
[49] Chanda, H., Das, P., Chakraborty, R., & Ghosh, A. (2011). Development and evaluation of liposomes of fluconazole. J Pharm Biomed Sci, 5(27), 1-9.